**Test Booklet Code** 

## **ANKHA**

No.: 1665252

This Booklet contains 24 pages.

Do not open this Test Booklet until you are asked to do so.

## Important Instructions:

- The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks.
   For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is H2. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/ Answer Sheet.
- 8. Use of white fluid for correction is NOT permissible on the Answer Sheet.
- 9. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- 13. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

| Name of the Ca  | ndidate (in Capitals) : |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Roll Number     | : in figures            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                 |                         | 4. Turning T. T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Centre of Exam  | ination (in Capitals) : | P. Committee of the com |  |
| Candidate's Sig | nature:                 | Invigilator's Signature :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Facsimile signa | ture stamp of           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Centre Superint | endent:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

- The number of protons, neutrons and electrons in <sup>175</sup><sub>71</sub>Lu, respectively, are:
  - (1) 175, 104 and 71
  - (2) 71, 104 and 71
  - (3) 104, 71 and 71
  - (4) 71, 71 and 104
- The following metal ion activates many enzymes, participates in the oxidation of glucose to produce ATP and with Na, is responsible for the transmission of nerve signals.
  - (1) Potassium
  - (2) Iron
  - (3) Copper
  - (4) Calcium
- 3. Which of the following is **not** correct about carbon monoxide?
  - (1) It is produced due to incomplete combustion.
  - (2) It forms carboxyhaemoglobin.
  - (3) It reduces oxygen carrying ability of blood.
  - (4) The carboxyhaemoglobin (haemoglobin bound to CO) is less stable than oxyhaemoglobin.
- 4. Which one of the followings has maximum number of atoms?
  - (1) 1 g of Li(s) [Atomic mass of Li = 7]
  - (2) 1 g of Ag(s) [Atomic mass of Ag = 108]
  - (3) 1 g of Mg(s) [Atomic mass of Mg = 24]
  - (4)  $1 \text{ g of } O_2(g) \text{ [Atomic mass of } O = 16]$
- 5. Paper chromatography is an example of:
  - (1) Column chromatography
  - (2) Adsorption chromatography
  - (3) Partition chromatography
  - (4) Thin layer chromatography
- 6. Which of the following is a natural polymer?
  - (1) poly (Butadiene-acrylonitrile)
  - (2) cis-1,4-polyisoprene
  - (3) poly (Butadiene-styrene)
  - (4) polybutadiene

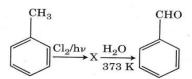
- 7. The mixture which shows positive deviation from Raoult's law is:
  - (1) Chloroethane + Bromoethane
  - (2) Ethanol+Acetone
  - (3) Benzene + Toluene
  - (4) Acetone + Chloroform
- 8. The calculated spin only magnetic moment of  ${\rm Cr}^{2+}$  ion is:
  - (1) 2.84 BM
  - (2) 3.87 BM
  - (3) 4.90 BM
  - (4) 5.92 BM
- 9. A tertiary butyl carbocation is more stable than a secondary butyl carbocation because of which of the following?
  - (1) Hyperconjugation
  - (2) − I effect of − CH<sub>3</sub> groups
  - (3) + R effect of CH<sub>3</sub> groups \*
  - (4) −R effect of −CH<sub>3</sub> groups \*
- 10. The correct option for free expansion of an ideal gas under adiabatic condition is:
  - (1) q > 0,  $\Delta T > 0$  and w > 0
  - (2)  $q = 0, \Delta T = 0 \text{ and } w = 0$
  - (3)  $q = 0, \Delta T < 0 \text{ and } w > 0$
  - (4)  $q < 0, \Delta T = 0 \text{ and } w = 0$
- Elimination reaction of 2-Bromo-pentane to form pent-2-ene is:
  - (a) β-Elimination reaction
  - (b) Follows Zaitsev rule
  - (c) Dehydrohalogenation reaction
  - (d) Dehydration reaction
  - (1) (a), (b), (d)
  - (2) (a), (b), (c)
  - (3) (a) (c), (d)
  - (4) (b), (c), (d)

- 12. Identify the correct statements from the following:
  - (a)  $CO_2(g)$  is used as refrigerant for ice-cream and frozen food.
  - (b) The structure of  $C_{60}$  contains twelve six carbon rings and twenty five carbon rings.
  - (c) ZSM-5, a type of zeolite, is used to convert alcohols into gasoline.
  - (d) CO is colorless and odourless gas.
  - (1) (c) and (d) only
  - (2) (a), (b) and (c) only
  - (3) (a) and (c) only
  - (4) (b) and (c) only
- Which of the following is the correct order of increasing field strength of ligands to form coordination compounds?
  - (1)  $CN^- < C_2O_4^{2-} < SCN^- < F^-$
  - (2)  $SCN^- < F^- < C_2O_4^{2-} < CN^-$
  - (3)  $SCN^- < F^- < CN^- < C_2O_4^{2-}$
  - (4)  $F^- < SCN^- < C_2O_4^{2-} < CN^-$
- 14 Hydrolysis of sucrose is given by the following reaction.

 $Sucrose + H_2O \mathop{\Longrightarrow}\limits_{} Glucose + Fructose$  If the equilibrium constant (K\_c) is  $2\times 10^{13}$  at 300~K, the value of  $\Delta_rG^{\ominus}$  at the same temperature will be:

- (1)  $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1}\times300\,\mathrm{K}\times\ln(4\times10^{13})$
- (2)  $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (3)  $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (4)  $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(3 \times 10^{13})$
- 16 Identify the incorrect match.

## Name **IUPAC Official Name** (a) Unnilunium (i) Mendelevium (b) Unniltrium (ii) Lawrencium (c) Unnilhexium Seaborgium (iii) (d) Unununnium Darmstadtium


- (1) (d), (iv)
- (2) (a), (i)
- (3) (b), (ii)
- (4) (c), (iii)

16. Anisole on cleavage with HI gives:

$$(1) \hspace{1cm} \begin{array}{c} I \\ \\ \\ \end{array} + C_2 H_5 OH \end{array}$$

$$(4) \qquad \qquad + C_2 H_5 I$$

- 17. Identify the correct statement from the following:
  - Pig iron can be moulded into a variety of shapes.
  - (2) Wrought iron is impure iron with 4% carbon.
  - (3) Blister copper has blistered appearance due to evolution of  ${\rm CO}_2$ .
  - (4) Vapour phase refining is carried out for Nickel by Van Arkel method.
- 18. For the reaction,  $2Cl(g) \rightarrow Cl_2(g)$ , the **correct** option is:
  - (1)  $\Delta_r H < 0$  and  $\Delta_r S < 0$
  - (2)  $\Delta_r H > 0$  and  $\Delta_r S > 0$
  - (3)  $\Delta_r H > 0$  and  $\Delta_r S < 0$
  - (4)  $\Delta_r H < 0$  and  $\Delta_r S > 0$



20. Match the following:

(4)

(iii)

(iv)

Oxide

## (a) CO (i) Basic (b) BaO (ii) Neutral (c) $Al_2O_3$ (iii) Acidic $Cl_2O_7$ (d) (iv) Amphoteric Which of the following is correct option? (a) (b) (c) (d) (1) (iv) (iii) (ii) (i) (2)(i) (ii) (iii) (iv) (3)(ii) (i) (iv) (iii)

(i)

(ii)

Nature

- 21. Urea reacts with water to form A which we decompose to form B. B when passed throug Cu<sup>2+</sup> (aq), deep blue colour solution C is formed What is the formula of C from the following?
  - (1) CuCO<sub>3</sub>·Cu(OH)<sub>2</sub>
  - (2) CuSO<sub>4</sub>
  - (3)  $[Cu(NH_3)_4]^{2+}$
  - (4) Cu(OH)<sub>2</sub>
- 22. On electrolysis of dil.sulphuric acid usin Platinum (Pt) electrode, the product obtained a anode will be:
  - (1) SO<sub>2</sub> gas
  - (2) Hydrogen gas
  - (3) Oxygen gas
  - (4) H<sub>2</sub>S gas
- 23. An element has a body centered cubic (bcc) structure with a cell edge of 288 pm. The atomic radius is:
  - (1)  $\frac{4}{\sqrt{2}} \times 288 \text{ pm}$
  - (2)  $\frac{\sqrt{3}}{4} \times 288 \text{ pm}$
  - $(3) \quad \frac{\sqrt{2}}{4} \times 288 \text{ pm}$
  - (4)  $\frac{4}{\sqrt{3}} \times 288 \text{ pm}$
- 24. Sucrose on hydrolysis gives:
  - (1)  $\alpha$ -D-Fructose +  $\beta$ -D-Fructose
  - (2)  $\beta$ -D-Glucose +  $\alpha$ -D-Fructose
  - (3)  $\alpha$ -D-Glucose +  $\beta$ -D-Glucose
  - (4) α-D-Glucose + β-D-Fructose
- 25. Which of the following is a basic amino acid?
  - (1) Lysine
  - (2) Serine
  - (3) Alanine
  - (4) Tyrosine

- 26. Which of the following set of molecules will have zero dipole moment?
  - (1) Boron trifluoride, beryllium difluoride, carbon dioxide, 1,4-dichlorobenzene
  - (2) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene
  - (3) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
  - (4) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene
- 27. The freezing point depression constant  $(K_f)$  of benzene is  $5.12~\rm K~kg~mol^{-1}$ . The freezing point depression for the solution of molality 0.078 m containing a non-electrolyte solute in benzene is (rounded off upto two decimal places):
  - (1) 0.60 K
  - (2) 0.20 K
  - (3) 0.80 K
  - (4) 0.40 K
- 28. Which of the following oxoacid of sulphur has -O-O-linkage?
  - (1) H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>, pyrosulphuric acid
  - (2) H<sub>2</sub>SO<sub>3</sub>, sulphurous acid
  - (3) H<sub>2</sub>SO<sub>4</sub>, sulphuric acid
  - (4) H<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, peroxodisulphuric acid
- 29. HCl was passed through a solution of CaCl<sub>2</sub>, MgCl<sub>2</sub> and NaCl. Which of the following compound(s) crystallise(s)?
  - (1) NaCl, MgCl2 and CaCl2
  - (2) Both MgCl2 and CaCl2
  - (3) Only NaCl
  - (4) Only MgCl<sub>2</sub>
- **30.** Measuring Zeta potential is useful in determining which property of colloidal solution?
  - (1) Size of the colloidal particles
  - (2) Viscosity
  - (3) Solubility
  - (4) Stability of the colloidal particles

- 31. The rate constant for a first order reaction is  $4.606 \times 10^{-3}$  s<sup>-1</sup>. The time required to reduce 2.0 g of the reactant to 0.2 g is:
  - (1) 1000 s
  - (2) 100 s
  - (3) 200 s
  - (4) 500 s
- 32. Which of the following alkane cannot be made in good yield by Wurtz reaction?
  - (1) n-Butane
  - (2) n-Hexane
  - (3) 2,3-Dimethylbutane
  - (4) n-Heptane
- Match the following and identify the correct option.
  - (a)  $CO(g) + H_2(g)$  (i)  $Mg(HCO_3)_2 + Ca(HCO_3)_2$
  - (b) Temporary (ii) An electron hardness of deficient hydride water
  - (c) B<sub>2</sub>H<sub>6</sub>
- (iii) Synthesis gas
- (d)  $H_2O_2$
- (iv) Non-planar structure
- (a) (b) (c) (d)
- (1) (i) (iii) (iv)
- (2) (iii) (i) (ii) (iv)
- (3) (iii) (ii) (iv)
- (4) (iii) (iv) (ii) (i)
- 34. Find out the solubility of  $Ni(OH)_2$  in 0.1 M NaOH. Given that the ionic product of  $Ni(OH)_2$  is  $2 \times 10^{-15}$ .
  - (1)  $1 \times 10^8 \,\mathrm{M}$
  - (2)  $2 \times 10^{-13} \,\mathrm{M}$
  - (3)  $2 \times 10^{-8} \,\mathrm{M}$
  - (4)  $1 \times 10^{-13} \,\mathrm{M}$
- 35. Identify a molecule which does not exist.
  - (1) O<sub>2</sub>
  - 2) He<sub>2</sub>
  - (3) Li<sub>2</sub>
  - (4) C<sub>2</sub>

**36.** Which of the following amine will give the carbylamine test?

- 37. Identify the incorrect statement.
  - (1) The oxidation states of chromium in  ${
    m CrO}_4^{2-}$  and  ${
    m Cr}_2{
    m O}_7^{2-}$  are not the same.
  - (2)  ${\rm Cr}^{2+}({\rm d}^4)$  is a stronger reducing agent than  ${\rm Fe}^{2+}({\rm d}^6)$  in water.
  - (3) The transition metals and their compounds are known for their catalytic activity due to their ability to adopt multiple oxidation states and to form complexes.
  - (4) Interstitial compounds are those that are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals.

- **38.** An increase in the concentration of the reactants of a reaction leads to change in:
  - (1) collision frequency
  - (2) activation energy
  - (3) heat of reaction
  - (4) threshold energy
- 39. A mixture of  $N_2$  and Ar gases in a cylinder contains 7 g of  $N_2$  and 8 g of Ar. If the total pressure of the mixture of the gases in the cylinder is 27 bar, the partial pressure of  $N_2$  is:

[Use atomic masses (in g mol  $^{-1}$ ): N = 14, Ar = 40]

- (1) 18 bar
- (2) 9 bar
- (3) 12 bar
- (4) 15 bar
- 40. The number of Faradays(F) required to produce 20 g of calcium from molten  $CaCl_2$  (Atomic mass of Ca = 40 g mol<sup>-1</sup>) is:
  - (1) 4
  - (2) 1
  - (3) 2
  - (4) 3
- 41. Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as:
  - (1) Cross Aldol condensation
  - (2) Aldol condensation
  - (3) Cannizzaro's reaction
  - (4) Cross Cannizzaro's reaction
- 42. What is the change in oxidation number of carbon in the following reaction?

 $\operatorname{CH}_4(\mathsf{g}) + 4\operatorname{Cl}_2(\mathsf{g}) \to \operatorname{CCl}_4(\mathsf{l}) + 4\operatorname{HCl}(\mathsf{g})$ 

- (1) 0 to -4
- (2) +4 to +4
- (3) 0 to + 4
- (4) 4 to + 4

43. An alkene on ozonolysis gives methanal as one of the product. Its structure is:

$$\begin{array}{cccc} & & \text{CH}_2\text{CH}_2\text{CH}_3 \\ & & & \\ \text{(1)} & & & \\ \end{array}$$

$$\begin{array}{c} \operatorname{CH_2}-\operatorname{CH_2}-\operatorname{CH_3} \\ \end{array} \tag{3}$$

$$CH_2 - CH = CH_2$$
(4)

- 44. Reaction between acetone and methylmagnesium chloride followed by hydrolysis will give:
  - (1) Isobutyl alcohol
  - (2) Isopropyl alcohol
  - (3) Sec. butyl alcohol
  - (4) Tert. butyl alcohol
- 45. Which of the following is a cationic detergent?
  - (1) Sodium dodecylbenzene sulphonate
  - (2) Sodium lauryl sulphate
  - (3) Sodium stearate
  - (4) Cetyltrimethyl ammonium bromide
- 46. Flippers of Penguins and Dolphins are examples of:
  - (1) Natural selection
  - (2) Adaptive radiation
  - (3) Convergent evolution
  - (4) Industrial melanism

- 47. Some dividing cells exit the cell cycle and enter vegetative inactive stage. This is called quiescent stage  $(G_0)$ . This process occurs at the end of:
  - (1) G<sub>2</sub> phase
  - (2) M phase
  - (3) G<sub>1</sub> phase
  - (4) Sphase
- 48. Match the following:
  - (a) Inhibitor of catalytic (i) Ricin activity
  - (b) Possess peptide bonds
- (ii) Malonate
- (c) Cell wall material in fungi
- (iii) Chitin
- (d) Secondary metabolite
- (iv) Collagen

Choose the correct option from the following:

- (a) (b) (c) (d) (ii) (iii) (i) (iv)
- (1) (ii) (iii) (i) (iv) (2) (ii) (iv) (iii) (i)
- (3) (iii) (i) (iv) (ii)
- (4) (iii) (iv) (i) (ii)
- 49. Floridean starch has structure similar to:
  - (1) Laminarin and cellulose
  - (2) Starch and cellulose
  - (3) Amylopectin and glycogen
  - (4) Mannitol and algin
- **50.** Secondary metabolites such as nicotine, strychnine and caffeine are produced by plants for their:
  - (1) Effect on reproduction
  - (2) Nutritive value
  - (3) Growth response
  - (4) Defence action
- 51. If the distance between two consecutive base pairs is 0.34 nm and the total number of base pairs of a DNA double helix in a typical mammalian cell is  $6.6 \times 10^9$  bp, then the length of the DNA is approximately:
  - (1) 2.7 meters
  - (2) 2.0 meters
  - (3) 2.5 meters
  - (4) 2.2 meters

- 52. The process responsible for facilitating loss of water in liquid form from the tip of grass blades at night and in early morning is:
  - (1) Plasmolysis
  - (2) Transpiration
  - (3) Root pressure
  - (4) Imbibition
- 53. Identify the wrong statement with reference to the gene T that controls ABO blood groups.
  - (1) Allele 'i' does not produce any sugar.
  - (2) The gene (I) has three alleles.
  - (3) A person will have only two of the three alleles.
  - (4) When I<sup>A</sup> and I<sup>B</sup> are present together, they express same type of sugar.
- **54.** Dissolution of the synaptonemal complex occurs during:
  - (1) Leptotene
  - (2) Pachytene
  - (3) Zygotene
  - (4) Diplotene
- 55. Which of the following is put into Anaerobic sludge digester for further sewage treatment?
  - (1) Activated sludge
  - (2) Primary sludge
  - (3) Floating debris
  - (4) Effluents of primary treatment
- 56. Which of the following statements are true for the phylum-Chordata?
  - (a) In Urochordata notochord extends from head to tail and it is present throughout their life.
  - (b) In Vertebrata notochord is present during the embryonic period only.
  - (c) Central nervous system is dorsal and hollow.
  - (d) Chordata is divided into 3 subphyla : Hemichordata, Tunicata and Cephalochordata.
  - (1) (b) and (c)
  - (2) (d) and (c)
  - (3) (c) and (a)
  - (4) (a) and (b)

- Select the option including all sexually transmitted diseases.
  - (1) Cancer, AIDS, Syphilis
  - (2) Gonorrhoea, Syphilis, Genital herpes
  - (3) Gonorrhoea, Malaria, Genital herpes
  - (4) AIDS, Malaria, Filaria
- 58. Cuboidal epithelium with brush border of microvilli is found in:
  - (1) eustachian tube
  - (2) lining of intestine
  - (3) ducts of salivary glands
  - (4) proximal convoluted tubule of nephron
- **59.** The transverse section of a plant shows following anatomical features:
  - (a) Large number of scattered vascular bundles surrounded by bundle sheath.
  - (b) Large conspicuous parenchymatous ground tissue
  - (c) Vascular bundles conjoint and closed.
  - (d) Phloem parenchyma absent.

Identify the category of plant and its part:

- (1) Dicotyledonous root
- (2) Monocotyledonous stem
- (3) Monocotyledonous root ...
- (4) Dicotyledonous stem
- 60. By which method was a new breed 'Hisardale' of sheep formed by using Bikaneri ewes and Marino rams?
  - (1) Inbreeding
  - (2) Out crossing
  - (3) Mutational breeding
  - (4) Cross breeding
- **61.** Montreal protocol was signed in 1987 for control of:
  - (1) Disposal of e-wastes
  - (2) Transport of Genetically modified organisms from one country to another
  - (3) Emission of ozone depleting substances
  - (4) Release of Green House gases

|                                          | Colu                                                                                 | ımn -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ι .                            |                                                                           | Column - II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)                                      | Bt co                                                                                | tton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | (i)                                                                       | Gene therapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (b)                                      | dean                                                                                 | nosine<br>ninase<br>iency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | (ii)                                                                      | Cellular defence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (c)                                      | RNA                                                                                  | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | (iii)                                                                     | Detection of HIV infection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (d)                                      | PCR                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | (iv)                                                                      | Bacillus<br>thuringiensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                          | (a)                                                                                  | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>(c)</b>                     | (d)                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1)                                      | (i)                                                                                  | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (iii)                          | (iv)                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (2)                                      | (iv)                                                                                 | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ii)                           | (iii)                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (3)                                      | (iii)                                                                                | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (i)                            | (iv)                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (4)                                      | (ii)                                                                                 | (iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (iv)                           | (i)                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (3)<br>(4)                               |                                                                                      | illion<br>illion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (4)                                      | 50 m                                                                                 | illion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~                              | Mak                                                                       | the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (4)<br>Choo<br>(1)                       | 50 m<br>ose the<br>Exor                                                              | illion<br>corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                              | Mak                                                                       | e cuts at specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (4)<br>Choo                              | 50 m                                                                                 | illion<br>corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                              | Mak<br>posit<br>Join                                                      | e cuts at specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (4)<br>Choo<br>(1)                       | 50 m<br>ose the<br>Exor<br>Liga                                                      | illion<br>corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ses -                          | Mak<br>posit<br>Join<br>mole<br>Brea                                      | e cuts at specific<br>tions within DNA<br>the two DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (4)<br>Choo<br>(1)<br>(2)                | 50 m<br>ose the<br>Exor<br>Liga<br>Poly                                              | corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ses -                          | Mak<br>posit<br>Join<br>mole<br>Brea<br>fragn                             | e cuts at specific<br>cions within DNA<br>the two DNA<br>cules<br>lk the DNA into<br>ments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (4) Choo (1) (2) (3) (4) Iden            | 50 mose the Exor  Liga  Poly  Nucl                                                   | illion corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es -                           | Mak<br>posit<br>Join<br>mole<br>Brea<br>fraga<br>Sepa<br>of DI            | e cuts at specific<br>tions within DNA<br>the two DNA<br>cules<br>ik the DNA into<br>ments<br>trate the two strands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (4) Choo (1) (2) (3) (4) Iden            | 50 m ose the Exor Liga Poly Nucl tify the                                            | correction corrections correct | es -                           | Mak<br>positi<br>Join<br>mole<br>Brea<br>frago<br>Sepa<br>of DI           | e cuts at specific tions within DNA the two DNA cules at the DNA into ments rate the two strands NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (4) Choo (1) (2) (3) (4) Iden Rest       | 50 m ose the Exor Liga Poly Nucl tify thriction Stick ligas Eacl                     | correction corrections and corrections are seen consistent consist | es - ong st mes. s can         | Mak<br>positi<br>Join<br>mole<br>Brea<br>fragn<br>Sepa<br>of DI<br>cateme | e cuts at specific<br>cions within DNA<br>the two DNA<br>cules<br>lk the DNA into<br>ments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (4) Chood (1) (2) (3) (4) Ident Rest (1) | 50 m  see the Exor  Ligar  Polyr  Nucl  tify thriction  Stick ligas  Each inspectors | correction corrections and corrections are wrong eases are wrong eases. In rest ecting wout the court of the corrections are considered as a constant of the corrections are constant of the corrections are considered as a constant of the corrections are c | es - ong st mes. s can riction | Mak<br>positi<br>Join<br>mole<br>Brea<br>frago<br>Sepa<br>of DI<br>cateme | e cuts at specific tions within DNA the two DNA cules at the DNA into ments rate the two strands NA ent with regard to med by using DNA the cuts of the control of the cuts of |

|      |                                                                                                   |                      |                                 |                 | , P      | H2                   |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------|----------------------|---------------------------------|-----------------|----------|----------------------|--|--|--|--|--|
| 66.  | Mato                                                                                              | h the                | organi                          | sm wit          | h its us | se in biotechnology. |  |  |  |  |  |
|      | (a)                                                                                               | Baci                 | llus                            |                 | (i)      | Cloning vector       |  |  |  |  |  |
|      | (81.8)                                                                                            | thur                 | ingien                          | sis             | 1 1 1 1  |                      |  |  |  |  |  |
|      | (b)                                                                                               | Ther                 | mus                             |                 | (ii)     | Construction of      |  |  |  |  |  |
|      | (~)                                                                                               |                      | iticus                          |                 | (11)     | first rDNA           |  |  |  |  |  |
|      |                                                                                                   | aqua                 | rread                           |                 |          | molecule             |  |  |  |  |  |
|      | (c)                                                                                               | Acro                 | bacter                          | ium             | (iii)    | DNA polymerase       |  |  |  |  |  |
|      | (C)                                                                                               |                      | efacien                         |                 | (111)    | DIVA polymerase      |  |  |  |  |  |
|      | (A)                                                                                               |                      | ionella                         |                 | (:)      | C                    |  |  |  |  |  |
|      | (d)                                                                                               |                      | ioneiid<br>imurii               |                 | (iv)     | Cry proteins         |  |  |  |  |  |
|      | C-1-                                                                                              |                      |                                 |                 | - C      | . 4b - f-11          |  |  |  |  |  |
|      | Sere                                                                                              | (a)                  | (b)                             | (c)             | (d)      | n the following :    |  |  |  |  |  |
|      | (1)                                                                                               | (iii)                | (iv)                            | (i)             | (ii)     |                      |  |  |  |  |  |
|      | (2)                                                                                               | (ii)                 | (iv)                            | (iii)           | (i) ·    |                      |  |  |  |  |  |
|      | (3)                                                                                               | (iv)                 | (iii)                           | (i)             | (ii)     |                      |  |  |  |  |  |
|      | (4)                                                                                               | (iii)                | (ii)                            | (iv)            | (i) ~    |                      |  |  |  |  |  |
| >    |                                                                                                   |                      |                                 |                 |          | rea tota dia         |  |  |  |  |  |
| 67.  |                                                                                                   |                      |                                 | wing o          | colum    | ns and select the    |  |  |  |  |  |
|      | corr                                                                                              | ect op               |                                 |                 |          | G 1 T                |  |  |  |  |  |
|      |                                                                                                   |                      | ımn -                           |                 |          | Column - II          |  |  |  |  |  |
|      | (a)                                                                                               | Orga                 | an of C                         | orti            | (i)      | Connects middle      |  |  |  |  |  |
|      |                                                                                                   |                      |                                 |                 |          | ear and pharynx      |  |  |  |  |  |
|      | (b)                                                                                               | Coch                 | lea                             | *               | (ii)     | Coiled part of the   |  |  |  |  |  |
|      |                                                                                                   |                      |                                 |                 |          | labyrinth            |  |  |  |  |  |
|      | (c)                                                                                               | Eust                 | achiar                          | ı tube          | (iii)    | Attached to the      |  |  |  |  |  |
|      |                                                                                                   |                      |                                 |                 |          | oval window          |  |  |  |  |  |
|      | (d)                                                                                               | Stap                 | es                              |                 | (iv)     | Located on the       |  |  |  |  |  |
|      |                                                                                                   |                      |                                 |                 |          | basilar              |  |  |  |  |  |
|      |                                                                                                   |                      |                                 |                 |          | membrane             |  |  |  |  |  |
|      |                                                                                                   | (a)                  | <b>(b)</b>                      | <b>(c)</b>      | (d)      |                      |  |  |  |  |  |
|      | (1)                                                                                               | (i)                  | (ii)                            | (iv)            | (iii)    |                      |  |  |  |  |  |
|      | (2)                                                                                               | (ii)                 | (iii)                           | (i)             | (iv)     |                      |  |  |  |  |  |
|      | (3)                                                                                               | (iii)                | (i)                             | (iv)            | (ii)     |                      |  |  |  |  |  |
|      | (4)                                                                                               | (iv)                 | (ii)                            | (i)             | (iii)    |                      |  |  |  |  |  |
| 68.  | The                                                                                               | ORS co               | omplex                          | in a st         | andar    | d ECG represents :   |  |  |  |  |  |
|      | (1)                                                                                               |                      |                                 | tion of         |          |                      |  |  |  |  |  |
|      | (2)                                                                                               | -                    |                                 | tion of         |          |                      |  |  |  |  |  |
|      | (3)                                                                                               | 4200                 |                                 | tion of         |          |                      |  |  |  |  |  |
|      | (4)                                                                                               | Depo                 | olarisa                         | tion of         | ventri   | cles                 |  |  |  |  |  |
| 4.3% | Idon                                                                                              | tifr the             | anhat                           | anaaa l         | orrina   | almonaidia hand and  |  |  |  |  |  |
| 69.  | Identify the substances having glycosidic bond and peptide bond, respectively in their structure: |                      |                                 |                 |          |                      |  |  |  |  |  |
| 69.  | pept                                                                                              |                      |                                 | P               | -5       |                      |  |  |  |  |  |
| 69.  |                                                                                                   |                      |                                 | ulin            |          |                      |  |  |  |  |  |
| 69.  | pept (1) (2)                                                                                      | Inul                 | in, insi                        | ulin<br>lestero | 1        |                      |  |  |  |  |  |
| 69.  | (1)                                                                                               | Inul:<br>Chit        | in, insi                        | lestero         | 1        |                      |  |  |  |  |  |
| 69.  | (1)<br>(2)                                                                                        | Inul<br>Chit<br>Glyc | in, insi<br>in, cho<br>erol, tr | lestero         |          |                      |  |  |  |  |  |

| H2  |           |                                                             | 1                           | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-----|-----------|-------------------------------------------------------------|-----------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 70. |           | ch of the following regions of est species diversity?       | of the globe exhibits       | 74.     | If the head of cockroach is removed, it may live fo few days because:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | (1)       | Amazon forests                                              |                             |         | (1) the head holds a 1/3rd of a nervous system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|     | (2)       | Western Ghats of India                                      |                             |         | while the rest is situated along the dors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | (3)       | Madagascar                                                  | Flore.                      |         | part of its body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|     | (4)       | Himalayas                                                   |                             |         | (2) the supra-oesophageal ganglia of the<br>cockroach are situated in ventral part<br>abdomen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 71. |           | ch the following column ect option.                         | ns and select the           |         | (3) the cockroach does not have nervous system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|     | COLL      | Column - I                                                  | Column - II                 | 9       | (4) the head holds a small proportion of a nervou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|     | (a)       | Placenta (i)                                                | Androgens                   |         | system while the rest is situated along the ventral part of its body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | (b)       | Zona pellucida (ii)                                         | Human Chorionic             | 100     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|     | (6)       | Zona pendeda (h)                                            | Gonadotropin                | 75.     | The number of substrate level phosphorylation in one turn of citric acid cycle is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|     |           | F2_14_164_164                                               | (hCG)                       | -       | (1) Three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | (c)       | Bulbo-urethral (iii)                                        | Layer of the ovum           | Service | (2) Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|     |           | glands                                                      |                             |         | (3) One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|     | (d)       | Leydig cells (iv)                                           | Lubrication of the<br>Penis |         | (4) Two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|     |           | (-) (b) (-) (d)                                             | rems                        | 76.     | The process of growth is maximum during:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|     | (1)       | (a) (b) (c) (d)                                             |                             |         | (1) Dormancy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|     |           | (ii) (iii) (iv) (i)                                         |                             |         | (2) Log phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     | (2)       | (iv) (iii) (i) (ii)                                         | And the second              |         | (3) Lagphase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|     | (3)       | (i) (iv) (ii) (iii) (iii) (iii) (iii) (iii) (iii) (iv) (ii) |                             |         | (4) Senescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|     | (4)       | (III) (II) (IV) (I)                                         |                             |         | (1) Deliescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 72. |           | ch the following column ect option.                         | ns and select the           | 77.     | How many true breeding pea plant varieties di<br>Mendel select as pairs, which were similar excep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|     |           | Column - I                                                  | Column - II                 |         | in one character with contrasting traits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | (a)       | Pituitary gland (i)                                         | Grave's disease             |         | (1) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | (b)       | Thyroid gland (ii)                                          | Diabetes mellitus           |         | (2) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | (c)       |                                                             | Diabetes insipidus          | 17      | (3) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | 1 1 1 1 1 |                                                             | (1995) 및 1911년 : 명          | Ī       | (4) 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|     | (d)       | Pancreas (iv)                                               | Addison's disease           | 78.     | In gel electrophoresis, separated DNA fragment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|     | - 60      | (a) (b) (c) (d)                                             |                             | who and | can be visualized with the help of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|     | (1)       | (ii) (i) (iv) (iii)                                         |                             | Dvde    | (1) Ethidium bromide in infrared radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|     | (2)       | (iv) (iii) (i) (ii)                                         | - 24                        |         | (2) Acetocarmine in bright blue light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | (3)       | (iii) (ii) (i) (iv)                                         |                             | E3 15   | (3) Ethidium bromide in UV radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|     | (4)       | (iii) (i) (iv) (ii)                                         |                             | 21      | (4) Acetocarmine in UV radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 73. |           | ch of the following is r<br>tance governing seed dorn       |                             | 79.     | Identify the basic amino acid from the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|     | (1)       | Para-ascorbic acid                                          | 1                           | 211     | (1) Valine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|     | (2)       |                                                             | (2, 11-                     | -       | (2) Tyrosine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|     | (3)       | Abscisic acid                                               |                             |         | (3) Glutamic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|     | (4)       | Phenolic acid                                               |                             |         | (4) Lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|     | (-)       |                                                             |                             | I       | to a more description of the control |  |  |  |

| ъ. н                                                                                           |                | 11            |                                                                                                |             |         |          |          |                |     |  |
|------------------------------------------------------------------------------------------------|----------------|---------------|------------------------------------------------------------------------------------------------|-------------|---------|----------|----------|----------------|-----|--|
| Which of the following would help in prevention iuresis?                                       | sis:   8       | pect to meios | th resp                                                                                        | ng wit      | followi | ch the f | Mate     | 80.            |     |  |
|                                                                                                | (1)            | L.            | minalization                                                                                   | Tern        | (i)     | tene     | Zygo     | (a)            |     |  |
| More water reabsorption due                                                                    | (2)            | į.            | asmata                                                                                         | Chia        | (ii)    | ytene    | Pach     | (b)            |     |  |
| undersecretion of ADH  Reabsorption of Na + and water from ren                                 | (2)            |               | ssing over                                                                                     | Cros        | (iii)   | otene    | Diplo    | (c)            |     |  |
| tubules due to aldosterone                                                                     | (3)            |               | apsis                                                                                          |             | (iv)    | inesis   | * "      | (d)            |     |  |
|                                                                                                | (4)            | ing:          | m the follow:                                                                                  | on fron     | t optic | correc   | ct the c | Selec          |     |  |
| vasoconstriction                                                                               |                |               |                                                                                                | (d)         | (c)     | (b)      | (a)      |                |     |  |
| now-blindness in Antarctic region is due to :                                                  | Snov           | 8             |                                                                                                | (i)         | (iii)   | (iv)     | (ii)     | (1)            |     |  |
| /1\                                                                                            | (1)            |               |                                                                                                | (ii)        | (i)     | (iv)     | (iii)    | (2)            |     |  |
|                                                                                                | (2)            |               |                                                                                                | (i)         | (ii)    | (iii)    | (iv)     | (3)            |     |  |
| temperature                                                                                    | (2)            |               |                                                                                                | (iii)       | (iv)    | (ii)     | (i)      | (4)            |     |  |
| Inflammation of cornea due to high dose UV-B radiation                                         | (3)            | usative       | Match the following diseases with the causative organism and select the <b>correct</b> option. |             |         |          |          |                | 81. |  |
| High reflection of light from snow                                                             | (4)            | - II          | Column                                                                                         |             |         | ımn - l  |          |                |     |  |
| t cotton variety that was developed by the                                                     | Wuchereria 85. |               | (i)                                                                                            | (a) Typhoid |         |          |          |                |     |  |
| ${ m atroduction}$ of toxin gene of ${\it Bacillus}$ thuringiens ${ m Bt}$ ) is resistant to : |                | um            | Plasmodi                                                                                       | (ii)        |         | monia    | Pneu     | (b)            |     |  |
| ) Insect predators                                                                             | (1)            | la            | Salmonel                                                                                       | (iii)       |         | iasis    | Filar    | (c)            |     |  |
| i) Insect pests                                                                                | (2)            | ilus          | Haemoph                                                                                        | (iv)        |         | ria      | Mala     | (d)            |     |  |
| 3) Fungal diseases                                                                             | (3)            |               | 6                                                                                              | (d)         | (c)     | (b)      | (a)      |                |     |  |
| Plant nematodes                                                                                | (4)            |               |                                                                                                | (iii)       | (ii)    | (i)      | (iv)     | (1)            |     |  |
| elect the correct events that occur durin                                                      | Sele           | 8             |                                                                                                | (iv)        | (ii)    | (iii)    | (i)      | (2)            |     |  |
| aspiration.                                                                                    |                |               |                                                                                                | (ii)        | (i)     | (iv)     | (iii)    | (3)            |     |  |
| Contraction of diaphragm                                                                       | (a)            |               |                                                                                                | (iv)        | (iii)   | (i)      | (ii)     | (4)            |     |  |
| O) Contraction of external inter-costal muscle                                                 | (b)            | lements       | g essential e                                                                                  | cernin      | g conc  | ollowin  | h the f  | Mate           | 82. |  |
| Pulmonary volume decreases                                                                     | (c)            | icincino      |                                                                                                |             |         | unction  |          |                | J.  |  |
| ) Intra pulmonary pressure increases                                                           | (d)            | ter           | tolysis of wa                                                                                  | Phot        | (i)     |          | Iron     | (a)            |     |  |
| only (d)                                                                                       | (1)            | ion           | en germinat                                                                                    | Polle       | (ii)    |          | Zinc     | (b)            |     |  |
| (a) and (b)                                                                                    | (2)            | orophyll      | uired for chlo<br>ynthesis                                                                     |             | (iii)   | n        | Boro     | (c)            |     |  |
|                                                                                                | (3)            | s             | biosynthesis                                                                                   |             | (iv)    | ganese   | Mans     | (d)            |     |  |
| (a), (b) and (d)                                                                               | (4)            |               |                                                                                                |             |         | correc   |          |                |     |  |
| Thich of the following is <b>correct</b> about viroids                                         | Whic           | 8             |                                                                                                | (d)         | (c)     | (b)      | (a)      | (A4)(1-37)(1-3 |     |  |
|                                                                                                | (1)            |               |                                                                                                | (iii)       | (ii)    | (i)      | (iv)     | (1)            |     |  |
|                                                                                                | (2)            |               |                                                                                                | (iii)       | (iv)    | (i)      | (ii)     | (2)            |     |  |
|                                                                                                | (3)            |               |                                                                                                | (i)         | (ii)    | (iii)    | (iv)     | (3)            |     |  |
|                                                                                                | (4)            |               |                                                                                                | (i)         | (ii)    | (iv)     | (iii)    | (4)            |     |  |

| H2  |                                  |              |               |              |              |                      | 1                           | 12   |            |                                            |                  | 34         |              |          |
|-----|----------------------------------|--------------|---------------|--------------|--------------|----------------------|-----------------------------|------|------------|--------------------------------------------|------------------|------------|--------------|----------|
| 88. |                                  | h the        |               | wing         | colum        | lumns and select the |                             |      |            | tch the following columns and rect option. |                  |            |              |          |
|     |                                  | Colu         | ımn -         | I            |              | Colu                 | ımn - II                    |      |            | Col                                        | umn -            | I          |              | Colu     |
|     | (a)                              | Floa         | ting Ri       | bs           | (i)          |                      | ted between                 |      | (a)        |                                            | tridiui<br>licum | n          | (i)          | Cyclo    |
|     |                                  |              |               |              |              | 775-75-15-15-15      | nth ribs                    |      | (b)        |                                            | hodern<br>sporun |            | (ii)         | Buty     |
|     | (b)                              | Acro         | mion          |              | (ii)         |                      | d of the .<br>nerus         |      | (c)        | Mon                                        | ascus<br>oureus  |            | (iii)        | Citri    |
|     | (c)                              | Scap         | ula           |              | (iii)        | Clav                 | icle                        |      | (d)        |                                            | ergillus         | niger      | (iv)         | Blood    |
|     | (d)                              | Glen         | oid cav       | vity         | (iv)         |                      | ot connect<br>the sternum   |      | (-7        | (a)                                        | (b)              | (c)        | (d)          | lower    |
|     |                                  | (a)          | (b)           | (c)          | (d)          | WIGH                 | the sternam                 | 1 -  | (1)        | (iv)                                       | (iii)            | (ii)       | (i)          |          |
|     | (1)                              |              | Van State     |              |              |                      |                             |      | (2)        | (iii)                                      | (iv)             | (ii)       | (i)          |          |
|     |                                  | (iv)         | (iii)         | (i)          | (ii)         |                      |                             |      | (3)        | (ii)                                       | (i)              | (iv)       | (iii)        |          |
|     | (2)                              | (ii)         | (iv)          | (i)          | (iii)        |                      |                             |      | (4)        | (i)                                        | (ii)             | (iv)       | (iii)        |          |
|     | (3)<br>(4) ·                     | (i)<br>(iii) | (iii)<br>(ii) | (ii)<br>(iv) | (iv)<br>(i)  |                      |                             | 93.  |            |                                            | arts w           |            | onsist       | of two g |
| 89. | Mate                             | h the        | follo         | wing         | columi       | ne an                | d select the                |      | (a)        | Polle                                      | en grai          | ns insi    | de the       | anthe    |
| 00. |                                  | ect op       |               | wing .       | corami       | us an                | a select the                | 1 8  | (b)        | Geri                                       | minate           | d poll     | en gra       | ain wit  |
|     | Column - I                       |              |               |              | Co           | lumn - II            |                             |      | gam        |                                            | -                |            |              |          |
|     |                                  |              | 1             |              |              |                      | (c)                         | Seed | linside    | the fr                                     | uit              |            |              |          |
|     | (a) Gregarious, polyphagous pest |              |               | S (1)        | (i) Asierius |                      |                             |      | ryo sa     |                                            |                  | vule       |              |          |
|     | (b)                              |              | t with        | radial       |              | (ii)                 | Scorpion                    | 18   | (d)<br>(1) |                                            | nd (d)           | O EXECUTOR | 0 0220 0     | , olic   |
|     | (0)                              |              | metry         |              |              | $(\Pi)$              | Beorpion                    |      | (2)        | (a) o                                      |                  |            |              |          |
|     |                                  |              |               |              | nmetry       | 7                    |                             |      | (3)        | (a), (                                     | b) and           | (c)        |              |          |
|     | (c)                              | Book         | lungs         |              |              | (iii)                | Ctenopland                  |      | (4)        | (c) a                                      | nd (d)           |            |              |          |
|     | (d)                              | Biolu        | ımines        | cence        |              | (iv)                 | Locusta                     | 94.  | Whi        | ch of t                                    | he fol           | lowing     | is <b>no</b> | t an at  |
|     |                                  | (a)          | (b)           | (c)          | (d)          |                      |                             |      |            | lation                                     |                  |            |              |          |
|     | (1)                              | (ii)         | (i)           | (iii)        | (iv)         |                      |                             |      | (1)        | 1000                                       | ies int          | eractio    | n            |          |
|     | (2)                              | (i)          | (iii)         | (ii)         | (iv)         |                      |                             |      | (2)<br>(3) | Sex :                                      |                  |            |              |          |
|     | (3)                              | (iv)         | (i)           | (ii)         | (iii)        |                      |                             |      | (4)        |                                            | tality           |            |              |          |
|     | (4)                              | (iii)        | (ii)          | (i)          | (iv)         |                      |                             | 95.  | The        | sequer                                     | ice tha          |            |              | copy n   |
| 90. | Ray                              | forets       | have :        |              |              |                      |                             |      | (1)        |                                            | A in the         |            | or, is t     | ermed    |
|     | (1)                              |              | inferio       |              | v            |                      |                             |      | (2)        | ~ .                                        | ctable           |            | r            |          |
|     |                                  |              | rior ova      |              | y            |                      |                             |      | (3)        | Oris                                       |                  | marke      |              |          |
|     | (,2,)<br>(3)                     |              | erior ov      |              |              |                      |                             |      | (4)        |                                            | ndrom            | ic sequ    | ence         |          |
|     | (4)                              |              | ogynou        |              | y            |                      |                             | 96.  |            |                                            | fic pa           |            |              | equen    |
| 91. |                                  |              |               |              |              |                      | the embryos<br>s who cannot |      | (1)        | 5' - (                                     | GGATO<br>CCTAO   | CC - 3'    |              |          |
|     | conce                            | eive?        |               |              |              |                      | Allered Wile Collins        |      | (2)        |                                            | GAAT             |            |              |          |
|     | (1)                              | GIF'         | Γ and I       | CSI          |              |                      |                             |      | (6)        |                                            | CTTAA            |            |              |          |
|     | (2)                              | ZIFT         | and I         | UT           |              |                      |                             |      | (3)        |                                            | GGAA             |            | i e          |          |
|     | (3)                              | GIF'         | Γ and 2       | ZIFT         |              |                      |                             | 1    | (4)        |                                            | CCTT(<br>CTTAA   |            |              |          |
|     | (4)                              | ICSI         | and Z         | IFT          |              |                      |                             |      | (4)        |                                            | GAAT             |            |              |          |

|     |        |              | 3                 |              |                      |
|-----|--------|--------------|-------------------|--------------|----------------------|
|     | h the  |              | wing o            | olum         | ns and select the    |
|     | Colu   | ımn -        | I                 |              | Column - II          |
| (a) | Closi  | tridiur      | n                 | (i)          | Cyclosporin-A        |
|     | buty   | licum        |                   |              | •                    |
| (b) |        | hodern       | n.a.              | (ii)         | Butyric Acid         |
| (6) |        | sporun       |                   | (11)         | Datyfieficia         |
| (c) | -      | ascus        |                   | (iii)        | Citric Acid          |
| (C) |        |              |                   | (111)        | Citric Acid          |
| (4) |        | ureus        |                   | (:)          | Blood cholesterol    |
| (d) | Aspe   | rgiiius      | niger             | (iv)         |                      |
|     |        | <i>a</i> ×   |                   | (1)          | lowering agent       |
| (4) | (a)    | (b)          | (c)               | (d)          |                      |
| (1) | (iv)   | (iii)        | (ii)              | (i)          |                      |
| (2) | (iii)  |              | (ii)              | (i)          |                      |
| (3) | (ii)   | (i)          | (iv)              | (iii)        |                      |
| (4) | (i)    | (ii)         | (iv)              | (iii)        |                      |
|     |        |              |                   | nsist        | of two generations - |
|     |        | the ot       |                   |              |                      |
| (a) | Polle  | n grai       | ns insi           | de the       | anther               |
| (b) | Gern   | ninate       | ain with two male |              |                      |
|     | game   | etes         |                   |              |                      |
| (c) | Seed   | inside       | the fru           | uit          |                      |
| (d) | Emb    | ryo sa       | c inside          | the o        | vule                 |
| (1) | (a) aı | nd (d)       |                   |              |                      |
| (2) | (a) or | nly          |                   |              |                      |
| (3) | (a), ( | b) and       | (c)               |              |                      |
| (4) | (c) ar | nd (d)       |                   |              |                      |
|     |        |              | owing             | is <b>no</b> | t an attribute of a  |
|     | lation | ?            |                   |              |                      |
| (1) |        |              | eraction          | n            |                      |
| (2) | Sex    |              |                   |              |                      |
| (3) | Nata   |              |                   |              |                      |
| (4) | Mort   | ality        |                   |              |                      |
|     |        |              |                   |              | copy number of the   |
|     |        |              |                   | r, is to     | ermed :              |
| (1) |        | gnition      |                   |              |                      |
| (2) |        |              | marker            |              |                      |
| (3) | Oris   |              |                   |              |                      |
| (4) | Palir  | ndrom        | ic seque          | ence         |                      |
|     |        |              |                   | mic s        | equence which is     |
|     |        |              | oRI is:           |              |                      |
| (1) |        | GATO         |                   |              |                      |
| (0) |        | CTAC         |                   |              |                      |
| (2) |        | HAATT        |                   |              |                      |
| (3) |        | TTAA<br>GAA( |                   |              |                      |
| (0) |        |              | GG - 5'           |              |                      |

|      |            |                           |         |         |                    | 1                                      | 13   |                                                                                                                                                   | H2                                                                                               |  |  |
|------|------------|---------------------------|---------|---------|--------------------|----------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| 97.  | theo       | ry of i                   | nherita |         | tion of<br>as don  | f the chromosomal<br>e by:             | 101. | In relation to Gross primary productivity and Net primary productivity of an ecosystem, which one of the following statements is <b>correct</b> ? |                                                                                                  |  |  |
|      | (1)        | Mor                       | gan     |         |                    |                                        |      | (1)                                                                                                                                               | There is no relationship between Gross                                                           |  |  |
|      | (2)<br>(3) | Men                       |         |         |                    |                                        |      | (1)                                                                                                                                               | primary productivity and Net primary productivity.                                               |  |  |
|      | (4)        | Bove                      |         |         |                    |                                        |      | (2)                                                                                                                                               | Gross primary productivity is always less than net primary productivity.                         |  |  |
| 98.  |            |                           |         |         |                    | yzed by nitrogenase<br>plants is/are : |      | (3)                                                                                                                                               | Gross primary productivity is always more than net primary productivity.                         |  |  |
|      |            |                           |         | 32%     |                    |                                        |      | (4)                                                                                                                                               | Gross primary productivity and Net primary                                                       |  |  |
|      | (1)<br>(2) |                           |         |         | droger             | 1                                      |      |                                                                                                                                                   | productivity are one and same.                                                                   |  |  |
|      |            |                           | nonia a |         |                    |                                        | 100  | VV7L :                                                                                                                                            | h fel fill                                                                                       |  |  |
|      | (3)        |                           | ate alo |         |                    |                                        | 102. |                                                                                                                                                   | ch of the following refer to <b>correct</b> example(s) ganisms which have evolved due to changes |  |  |
|      | (4)        | Amr                       | nonia a | and ox  | ygen               | 11 1 El Ex ,                           |      |                                                                                                                                                   | in environment brought about by anthropogen action?                                              |  |  |
| 99.  |            | ch the                    |         | wing    | colum              | ns and select the                      |      | (a)                                                                                                                                               | Darwin's Finches of Galapagos islands.                                                           |  |  |
|      |            | Column - I                |         |         |                    | Column - II                            |      | (b)                                                                                                                                               | Herbicide resistant weeds.                                                                       |  |  |
|      |            |                           |         |         | _                  |                                        |      | (c)                                                                                                                                               | Drug resistant eukaryotes.                                                                       |  |  |
|      | (a)        | gill slits                |         | (i)     |                    |                                        | (d)  | Man-created breeds of domesticated animals                                                                                                        |                                                                                                  |  |  |
|      | 8270       |                           |         |         |                    |                                        |      | like dogs.                                                                                                                                        |                                                                                                  |  |  |
|      | (b)        | caudal fin<br>Air Bladder |         |         | (ii)               | Cyclostomes                            |      | (1)                                                                                                                                               | only (d)                                                                                         |  |  |
|      |            |                           |         |         |                    |                                        |      | (2)                                                                                                                                               | only (a)                                                                                         |  |  |
|      | (c)        |                           |         |         | (iii)              | (iii) Chondrichthyes                   |      | (3)                                                                                                                                               | (a) and (c)                                                                                      |  |  |
|      | (d)        |                           |         |         | (iv)               | Osteichthyes                           |      | (4)                                                                                                                                               | (b), (c) and (d)                                                                                 |  |  |
|      |            | (a)                       | (b)     | (c)     | (d)                |                                        |      | +                                                                                                                                                 | (-), (-)                                                                                         |  |  |
|      | (1)        | (i)                       | (iv)    | (iii)   | (ii)               | to a                                   | 103. |                                                                                                                                                   | ch of the following hormone levels will cause                                                    |  |  |
|      | (2)        | (ii)                      | (iii)   | (iv)    | (i)                |                                        |      | relea                                                                                                                                             | ase of ovum (ovulation) from the graffian le?                                                    |  |  |
|      | (3)        | (iii)                     | (iv)    | (i)     | (ii)               |                                        |      | (1)                                                                                                                                               | Low concentration of FSH                                                                         |  |  |
|      | (4)        | (iv)                      | (ii)    | (iii)   | (i)                |                                        |      | (2)                                                                                                                                               | High concentration of Estrogen                                                                   |  |  |
|      |            |                           |         |         | O                  |                                        |      | (3)                                                                                                                                               | High concentration of Progesterone                                                               |  |  |
| 100. | Iden       | tify the                  | inco    | rrects  | statem             | ent.                                   |      | (4)                                                                                                                                               | Low concentration of LH                                                                          |  |  |
|      | (1)        |                           |         |         | of tann<br>k in co | ins, resins, oils etc.,<br>lour.       | 104. |                                                                                                                                                   | ght reaction, plastoquinone facilitates the                                                      |  |  |
|      | (2)        |                           |         |         |                    | luct water but gives                   | 104. | trans                                                                                                                                             | sfer of electrons from :                                                                         |  |  |
|      | (0)        |                           |         | suppo   |                    |                                        |      | (1)                                                                                                                                               | PS-I to ATP synthase                                                                             |  |  |
|      | (3)        |                           |         |         |                    | conduction of water<br>to leaf.        |      | (2)                                                                                                                                               | PS-II to Cytb <sub>6</sub> f complex                                                             |  |  |
|      | (4)        |                           |         |         |                    | st secondary xylem                     |      | (3)                                                                                                                                               | Cytb <sub>6</sub> f complex to PS-I                                                              |  |  |
|      | /          |                           |         | er in c |                    | coolinary agreem                       |      | (4)                                                                                                                                               | PS-I to NADP+                                                                                    |  |  |

- 105. Which of the following statements is not correct?
  - Genetically engineered insulin is produced in E-Coli.
  - (2) In man insulin is synthesised as a proinsulin.
  - (3) The proinsulin has an extra peptide called C-peptide.
  - (4) The functional insulin has A and B chains linked together by hydrogen bonds.
- 106. From his experiments, S.L. Miller produced amino acids by mixing the following in a closed flask:
  - CH<sub>3</sub>, H<sub>2</sub>, NH<sub>3</sub> and water vapor at 600°C
  - (2) CH<sub>4</sub>, H<sub>2</sub>, NH<sub>3</sub> and water vapor at 800°C
  - (3) CH<sub>3</sub>, H<sub>2</sub>, NH<sub>4</sub> and water vapor at 800°C
  - (4) CH<sub>4</sub>, H<sub>2</sub>, NH<sub>3</sub> and water vapor at 600°C
- 107. Select the correct match.
  - (1) Thalassemia

X linked \*

- (2) Haemophilia
- Y linked \*
- (3) Phenylketonuria
- Autosomal

dominant trait

(4) Sickle cell anaemia -

Autosomal recessive trait, + chromosome-11

- 108. Embryological support for evolution was disapproved by:
  - (1) Oparin
  - (2) Karl Ernst von Baer
  - (3) Alfred Wallace
  - (4) Charles Darwin
- 109. Presence of which of the following conditions in urine are indicative of Diabetes Mellitus?
  - (1) Renal calculi and Hyperglycaemia
  - (2) Uremia and Ketonuria
  - (3) Uremia and Renal Calculi
  - (4) Ketonuria and Glycosuria
- 110. The enzyme enterokinase helps in conversion of:
  - (1) pepsinogen into pepsin
  - (2) protein into polypeptides
  - (3) trypsinogen into trypsin
  - (4) caseinogen into casein

- | 111. Strobili or cones are found in :
  - (1) Equisetum
  - (2) Salvinia
  - (3) Pteris
  - (4) Marchantia
  - 112. Meiotic division of the secondary oocyte is completed:
    - (1) At the time of fusion of a sperm with an
    - (2) Prior to ovulation
    - (3) At the time of copulation
    - (4) After zygote formation
  - 113. The body of the ovule is fused within the funicle at:
    - (1) Chalaza
    - (2) Hilum
    - (3) Micropyle
    - (4) Nucellus
  - 114. Goblet cells of alimentary canal are modified from:
    - (1) Compound epithelial cells
    - (2) Squamous epithelial cells
    - (3) Columnar epithelial cells
    - (4) Chondrocytes
  - 115. Which of the following statements about inclusion bodies is incorrect?
    - These represent reserve material in cytoplasm.
    - (2) They are not bound by any membrane.
    - (3) These are involved in ingestion of food particles.
    - (4) They lie free in the cytoplasm.
  - 116. Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop.
    - (1) Abscisic acid
    - (2) Cytokinin
    - (3) Gibberellin
    - (4) Ethylene

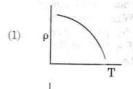
| 117. |              | ntify the <b>correct</b> statement with reference to nan digestive system.     | 122.   | Whi                                         | ich is the important site of formation of oproteins and glycolipids in eukaryotic cells? |  |  |
|------|--------------|--------------------------------------------------------------------------------|--------|---------------------------------------------|------------------------------------------------------------------------------------------|--|--|
|      | (1)          | Vermiform appendix arises from duodenum.                                       |        | (1)                                         | Polysomes                                                                                |  |  |
|      | (2)          | Ileum opens into small intestine.                                              | 1      | (2)                                         | Endoplasmic reticulum                                                                    |  |  |
|      | (3)          | Serosa is the innermost layer of the                                           | 1 1113 | (3)                                         | Peroxisomes                                                                              |  |  |
|      | (4)          | alimentary canal.<br>Ileum is a highly coiled part.                            |        | (4)                                         | Golgi bodies                                                                             |  |  |
|      |              |                                                                                | 123.   | Ider                                        | atify the correct statement with regard to                                               |  |  |
| 118. |              | ovary is half inferior in :                                                    | 27730  | G <sub>1</sub> phase (Gap 1) of interphase. |                                                                                          |  |  |
|      | (1)          | Plum                                                                           |        | (1)                                         | Nuclear Division takes place.                                                            |  |  |
|      | (2)          | Brinjal                                                                        | 1214   | (2)                                         | DNA synthesis or replication takes place.                                                |  |  |
|      | (3)<br>(4)   | Mustard<br>Sunflower                                                           |        | (3)                                         | Reorganisation of all cell components takes place.                                       |  |  |
|      |              | A RECEIPTION OF                                                                |        | (4)                                         | Cell is metabolically active, grows but does                                             |  |  |
| 119. |              | infectious stage of <i>Plasmodium</i> that enters numan body is:               |        |                                             | not replicate its DNA.                                                                   |  |  |
|      | (1)          | Male gametocytes                                                               | 124.   | The                                         | first phase of translation is:                                                           |  |  |
|      | (2)          | Trophozoites                                                                   |        | (1)                                         | Recognition of an anti-codon                                                             |  |  |
|      | (3)          | Sporozoites                                                                    |        | (2)                                         | Binding of mRNA to ribosome                                                              |  |  |
|      | (4)          | Female gametocytes                                                             |        | (3)                                         | Recognition of DNA molecule                                                              |  |  |
| 120. | Iden         | tify the wrong statement with reference to unity.                              |        | (4)                                         | Aminoacylation of tRNA                                                                   |  |  |
|      | (1)          | Foetus receives some antibodies from                                           | 125.   | Nam                                         | e the enzyme that facilitates opening of DNA                                             |  |  |
|      | (1)          | mother, it is an example for passive                                           | Sea    | helix                                       | during transcription.                                                                    |  |  |
|      |              | immunity.                                                                      |        | (1)                                         | RNA polymerase                                                                           |  |  |
|      | (2)          | When exposed to antigen (living or dead)                                       |        | (2)                                         | DNA ligase                                                                               |  |  |
|      |              | antibodies are produced in the host's body.<br>It is called "Active immunity". | - V    | (3)                                         | DNA helicase                                                                             |  |  |
|      | (3)          | When ready-made antibodies are directly                                        |        | (4)                                         | DNA polymerase                                                                           |  |  |
|      |              | given, it is called "Passive immunity".                                        | 126.   | The                                         | roots that originate from the base of the stem                                           |  |  |
|      | (4)          | Active immunity is quick and gives full                                        |        | are:                                        | some share originate from the base of the stem                                           |  |  |
|      |              | response.                                                                      | rela   | (1)                                         | Lateral roots                                                                            |  |  |
| 121. | Mato         | h the trophic levels with their correct species                                |        | (2)                                         | Fibrous roots                                                                            |  |  |
|      | exan         | aples in grassland ecosystem.                                                  |        | (3)                                         | Primary roots                                                                            |  |  |
|      | (a)          | Fourth trophic level (i) Crow                                                  |        | (4)                                         | Prop roots                                                                               |  |  |
|      | (b)          | Second trophic level (ii) Vulture                                              | 105    | 297                                         | manufacture of the second                                                                |  |  |
|      | (c)          | First trophic level (iii) Rabbit                                               | 127.   |                                             | tify the <b>wrong</b> statement with reference to sport of oxygen.                       |  |  |
| ter  | (d)<br>Solor | Third trophic level (iv) Grass                                                 |        | (1)                                         | Low pCO <sub>2</sub> in alveoli favours the formation of oxyhaemoglobin.                 |  |  |
|      | Selec        | (a) (b) (c) (d)                                                                |        | (2)                                         | Binding of oxygen with haemoglobin is                                                    |  |  |
|      | (1)          | (i) (ii) (iii) (iv)                                                            |        | Maril VIII                                  | mainly related to partial pressure of $O_2$ .                                            |  |  |
|      | (2)          | (ii) (iii) (iv) (i)                                                            |        | (3)                                         | Partial pressure of $CO_2$ can interfere with                                            |  |  |
|      | (3)          | (iii) (ii) (i) (iv)                                                            |        | (4)                                         | O <sub>2</sub> binding with haemoglobin.                                                 |  |  |
|      | (4)          | (iv) (iii) (i) (i)                                                             |        | 4                                           | Higher H <sup>+</sup> conc. in alveoli favours the formation of oxyhaemoglobin.          |  |  |

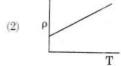
- 128. Select the correct statement.
  - (1) Insulin is associated with hyperglycemia.
  - (2) Glucocorticoids stimulate gluconeogenesis.
  - (3) Glucagon is associated with hypoglycemia:
  - Insulin acts on pancreatic cells and adipocytes.
- 129. Bilaterally symmetrical and acoelomate animals are exemplified by :
  - (1) Annelida
  - (2) Ctenophora
  - (3) Platyhelminthes
  - (4) Aschelminthes
- 130. The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of:
  - 1 molecule of 4-C compound and 1 molecule of 2-C compound
  - (2) 2 molecules of 3-C compound
  - (3) 1 molecule of 3-C compound
  - (4) 1 molecule of 6-C compound
- 131. Which one of the following is the most abundant protein in the animals?
  - (1) Insulin
  - (2) Haemoglobin
  - (3) Collagen
  - (4) Lectin
- 132. Which of the following pairs is of unicellular algae?
  - (1) Chlorella and Spirulina
  - (2) Laminaria and Sargassum
  - (3) Gelidium and Gracilaria
  - (4) Anabaena and Volvox
- 133. In water hyacinth and water lily, pollination takes place by :
  - (1) insects and water
  - (2) insects or wind
  - (3) water currents only
  - (4) wind and water

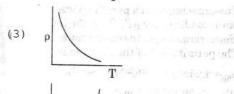
- 134. Which of the following statements is correct?
  - (1) Adenine does not pair with thymine.
  - Adenine pairs with thymine through two H-bonds.
  - (3) Adenine pairs with thymine through one H-bond.
  - (4) Adenine pairs with thymine through three H-bonds.
- Match the following columns and select the correct option.

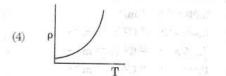
Column - II Column - I (a) Eosinophils Immune response Basophils Phagocytosis (b) Neutrophils Release (c) histaminase, destructive enzymes Release granules Lymphocytes (iv) containing histamine (b) (c) (d) (a) (iv) (iii) (1)(ii) (i) (2)(iii) (iv) (ii) (i) (3)(iv) (ii) (iii)

- (2) (iii) (iv) (ii) (i) (3) (iv) (i) (ii) (iii) (4) (i) (ii) (iv) (iii)
- 136. In a guitar, two strings A and B made of same material are slightly out of tune and produce beats of frequency 6 Hz. When tension in B is slightly decreased, the beat frequency increases to 7 Hz. If the frequency of A is 530 Hz, the original frequency of B will be:
  - (1) 537 Hz
  - (2) 523 Hz
  - (3) 524 Hz
  - (4) 536 Hz
- 137. The capacitance of a parallel plate capacitor with air as medium is 6 μF. With the introduction of a dielectric medium, the capacitance becomes 30 μF. The permittivity of the medium is:


$$(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2})$$


- (1)  $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (2)  $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (3)  $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (4)  $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$


- 138. The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:
  - (1) zero
  - (2) π rad
  - (3)  $\frac{3\pi}{2}$  rad
  - (4)  $\frac{\pi}{2}$  rad
- 139. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled?
  - (1) zero
  - (2) doubled
  - (3) four times
  - (4) one-fourth
- 140. A spherical conductor of radius 10 cm has a charge of  $3.2 \times 10^{-7}$  C distributed uniformly. What is the magnitude of electric field at a point 15 cm from the centre of the sphere?


$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) 1.28×10<sup>7</sup> N/C
- (2) 1.28 × 10<sup>4</sup> N/C
- (3) 1.28 × 10<sup>5</sup> N/C
- (4)  $1.28 \times 10^6 \text{ N/C}$
- 41. Which of the following graph represents the variation of resistivity (ρ) with temperature (T) for copper?









- 142. For transistor action, which of the following statements is correct?
  - The base region must be very thin and lightly doped.
  - (2) Base, emitter and collector regions should have same doping concentrations.
  - (3) Base, emitter and collector regions should have same size.
  - (4) Both emitter junction as well as the collector junction are forward biased.
- 143. The average thermal energy for a mono-atomic gas is :  $(k_{\rm B}$  is Boltzmann constant and T, absolute temperature)
  - (1)  $\frac{7}{2} k_B T$
  - (2)  $\frac{1}{2} k_B T$
  - (3)  $\frac{3}{2} k_B T$
  - (4)  $\frac{5}{2} k_B T$
- 144. In a certain region of space with volume 0.2 m³, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is:
  - (1) 5 N/C
  - (2) zero
  - (3) 0.5 N/C
  - (4) 1 N/C
- 145. A capillary tube of radius r is immersed in water and water rises in it to a height h. The mass of the water in the capillary is 5 g. Another capillary tube of radius 2r is immersed in water. The mass of water that will rise in this tube is:
  - (1) 20.0 g
  - (2) 2.5 g
  - (3) 5.0 g
  - (4) 10.0 g
- 146. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass.

The centre of mass of the system from the 5 kg particle is nearly at a distance of:

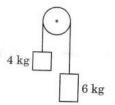
- (1) 80 cm
- (2) 33 cm
- (3) 50 cm
- (4) 67 cm

- 147. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is:
  - (1) isobaric
  - (2) isothermal
  - (3) adiabatic
  - (4) isochoric
- 148. The energy required to break one bond in DNA is  $10^{-20}$  J. This value in eV is nearly:
  - (1) 0.006
  - (2) 6
  - (3) 0.6
  - (4) 0.06
- 149. A ball is thrown vertically downward with a velocity of 20 m/s from the top of a tower. It hits the ground after some time with a velocity of 80 m/s. The height of the tower is:  $(g = 10 \text{ m/s}^2)$ 
  - (1) 300 m
  - (2) 360 m
  - (3) 340 m
  - (4) 320 m
- 150. The energy equivalent of 0.5 g of a substance is:
  - (1)  $0.5 \times 10^{13} \,\text{J}$
  - (2)  $4.5 \times 10^{16} \,\mathrm{J}$
  - (3)  $4.5 \times 10^{13} \,\mathrm{J}$
  - (4)  $1.5 \times 10^{13} \,\mathrm{J}$
- 151. The solids which have the negative temperature coefficient of resistance are:
  - (1) insulators and semiconductors
  - (2) metals
  - (3) insulators only
  - (4) semiconductors only
- 152. An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is  $1.227 \times 10^{-2}$  nm, the potential difference is:
  - (1)  $10^4 \, \text{V}$
  - (2) 10 V
  - (3)  $10^2 \, \text{V}$
  - (4)  $10^3 \, \text{V}$

153. A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of the solenoid is:

$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

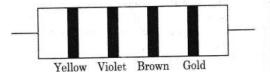
- (1)  $3.14 \times 10^{-5} \,\mathrm{T}$
- (2) 6.28×10<sup>-4</sup>T
- (3)  $3.14 \times 10^{-4} \text{ T}$
- (4)  $6.28 \times 10^{-5} \,\mathrm{T}$
- 154. The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is: (c = speed of electromagnetic waves)
  - (1) 1:c<sup>2</sup>
  - (2) c:1
  - (3) 1:1
  - (4) 1:c
- 155. A short electric dipole has a dipole moment of 16×10<sup>-9</sup> C m. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole, situated on a line making an angle of 60° with the dipole axis is:


$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) zero
- (2) 50 V
- (3) 200 V
- (4) 400 V
- 156. An iron rod of susceptibility 599 is subjected to a magnetising field of 1200 A m<sup>-1</sup>. The permeability of the material of the rod is:

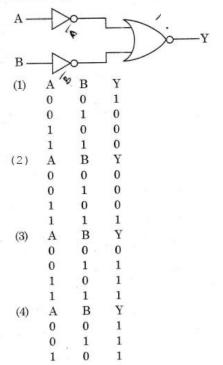
$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

- (1)  $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- (2)  $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$
- (3)  $8.0 \times 10^{-5} \,\mathrm{T} \,\mathrm{m} \,\mathrm{A}^{-1}$
- (4)  $2.4\pi \times 10^{-5} \text{ T m A}^{-1}$
- 157. A body weighs 72 N on the surface of the earth 1 What is the gravitational force on it, at a height equal to half the radius of the earth?
  - (1) 24 N
  - (2) 48 N
  - (3) 32 N
  - (4) 30 N


- 158. A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale.
  - The pitch of the screw gauge is:
  - (1) 1.0 mm
  - (2) 0.01 mm
  - (3) 0.25 mm
  - (4) 0.5 mm
- 159. The quantities of heat required to raise the temperature of two solid copper spheres of radii  ${\bf r}_1$  and  ${\bf r}_2$  ( ${\bf r}_1$ =1.5  ${\bf r}_2$ ) through 1 K are in the ratio:
  - (1)  $\frac{5}{3}$
  - (2)  $\frac{27}{8}$
  - (3)  $\frac{9}{4}$
  - (4)  $\frac{3}{2}$
- 160. Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a pulley which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity (g) is:



- (1) g/10
- (2) g
- (3) g/2
- (4) g/5
- 161. Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is:
  - (1)  $6.00 \times 10^{-7} \text{ rad}$
  - (2)  $3.66 \times 10^{-7} \text{ rad}$
  - (3)  $1.83 \times 10^{-7}$  rad
  - (4)  $7.32 \times 10^{-7}$  rad


- 162. The increase in the width of the depletion region in a p-n junction diode is due to:
  - (1) increase in forward current
  - (2) forward bias only
  - (3) reverse bias only
  - (4) both forward bias and reverse bias
- 163. Light with an average flux of 20 W/cm² falls on a non-reflecting surface at normal incidence having surface area 20 cm². The energy received by the surface during time span of 1 minute is:
  - (1)  $48 \times 10^3 \text{ J}$
  - (2) 10×10<sup>3</sup> J
  - (3)  $12 \times 10^3 \text{ J}$
  - (4)  $24 \times 10^3 \,\text{J}$
- 164. The mean free path for a gas, with molecular diameter d and number density n can be expressed as:
  - (1)  $\frac{1}{\sqrt{2} n^2 \pi^2 d^2}$
  - (2)  $\frac{1}{\sqrt{2} \text{ n}\pi d}$
  - (3)  $\frac{1}{\sqrt{2} n \pi d^2}$
  - (4)  $\frac{1}{\sqrt{2} n^2 \pi d^2}$
- 165. A 40  $\mu F$  capacitor is connected to a 200 V, 50 Hz ac supply. The rms value of the current in the circuit is, nearly:
  - (1) 25.1 A
  - (2) 1.7 A
  - (3) 2.05 A
  - (4) 2.5 A

166. The color code of a resistance is given below:



The values of resistance and tolerance, respectively,

- (1)  $470 \Omega, 5\%$
- (2)  $470 \text{ k}\Omega, 5\%$
- (3) 47 kΩ, 10%
- (4)  $4.7 \text{ k}\Omega, 5\%$
- 167. A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire changes to  $L_1$  when mass M is suspended from its free end. The expression for Young's modulus is:
  - $(1) \qquad \frac{\cdot MgL}{A(L_1 L)}$
  - (2)  $\frac{\text{MgL}_1}{\text{AL}}$
  - $\frac{Mg(L_1 L)}{AL}$
  - (4)  $\frac{\text{MgL}}{\text{AL}_0}$
- 168. For the logic circuit shown, the truth table is:



1

1

- 169. A series LCR circuit is connected to an ac voltage source. When L is removed from the circuit, the phase difference between current and voltage is  $\frac{\pi}{3}$ . If instead C is removed from the circuit, the phase difference is again  $\frac{\pi}{3}$  between current and voltage. The power factor of the circuit is:
  - (1) -1.0
  - (2) zero
  - (3) 0.5
  - (4) 1.0
  - 170. Dimensions of stress are:
    - (1) [ML<sup>-1</sup>T<sup>-2</sup>]
    - (2)  $[MLT^{-2}]$
    - (3)  $[ML^2T^{-2}]$
    - (4)  $[ML^0T^{-2}]$
- A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27°C.

Its density is :  $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$ 

- (1)  $0.02 \text{ kg/m}^3$
- (2)  $0.5 \text{ kg/m}^3$
- (3)  $0.2 \text{ kg/m}^3$
- (4)  $0.1 \text{ kg/m}^3$
- 172. Find the torque about the origin when a force of  $3\hat{j}$  N acts on a particle whose position vector is  $2\hat{k}$  m.
  - (1)  $6\hat{k}$  N m
  - (2)  $6\hat{i}$  N m
  - (3) 6 j N m
  - $(4) 6\hat{i} \text{ N m}$
- 173. For which one of the following, Bohr model is not valid?
  - Singly ionised neon atom (Ne+)
  - (2) Hydrogen atom
  - (3) Singly ionised helium atom (He+)
  - (4) Deuteron atom

- 174. When a uranium isotope  $^{235}_{92}\mathrm{U}$  is bombarded with a neutron, it generates  $^{89}_{36}\mathrm{Kr}\,,$  three neutrons and:
  - 103 Kr (1)
  - (2) 144<sub>56</sub>Ba
  - $^{91}_{40}{
    m Zr}$ (3)
  - $^{101}_{36}{
    m Kr}$ (4)
- Taking into account of the significant figures, what is the value of 9.99 m - 0.0099 m?
  - (1) 9.9 m
  - (2) 9.9801 m
  - (3) 9.98 m
  - (4) 9.980 m
- 176. The Brewsters angle  $i_b$  for an interface should be :
  - $i_b = 90^{\circ}$
  - $0^{\circ} < i_b < 30^{\circ}$
  - (3)  $30^{\circ} < i_b < 45^{\circ}$
  - 45° < i<sub>b</sub> < 90°
- 177. A charged particle having drift velocity of  $7.5 \times 10^{-4}$  m s<sup>-1</sup> in an electric field of  $3 \times 10^{-10}$  Vm<sup>-1</sup>, has a mobility in m<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>
  - (1)  $2.25 \times 10^{-15}$
  - (2)  $2.25 \times 10^{15}$
  - (3)  $2.5\times10^6$
  - (4)  $2.5 \times 10^{-6}$
- In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes:
  - (1) one-fourth
  - (2) double
  - (3)half
  - (4) four times

- 179. A resistance wire connected in the left gap of a metre bridge balances a 10  $\Omega$  resistance in the right gap at a point which divides the bridge wire in the ratio 3:2. If the length of the resistance wire is 1.5 m, then the length of 1  $\Omega$  of the resistance wire is:
  - (1) $1.5 \times 10^{-2} \,\mathrm{m}$
  - (2) $1.0 \times 10^{-2} \,\mathrm{m}$
  - (3) $1.0 \times 10^{-1} \, \text{m}$
  - (4)  $1.5 \times 10^{-1} \, \text{m}$
- A ray is incident at an angle of incidence i on one 180. surface of a small angle prism (with angle of prism A) and emerges normally from the opposite surface. If the refractive index of the material of the prism is  $\mu$ , then the angle of incidence is nearly equal
  - $\mu A$ (1)
  - (2)
  - 2A (3)
  - (4)

- o O o -