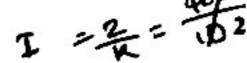

PROF. P.C.THOMAS CLASSES & CHAITHANYA CLASSES NEET 2023 EXAM DATED : 07/05/2023

VERSION CODE: H2

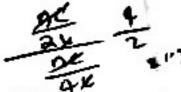
SECTION A	Q.No.	KEY	Q.No.	KEY	Q.No.	KEY	Q.No.	KEY
1. NA 51. 3 101. 4 151. 4 2. 3 52. 2 102. 3 152. 3 3. 1 53. 4 103. 1 153. 1 4. 1 54. 1 104. 4 154. 2 5. 3 55. 1 106. 4 156. 3 6. 4 56. 4 106. 4 157. 2 8. 4 58. 1 108. 3 158. 3 9. 1 59. 3 109. 2 159. 2 10. 1 60. 4 110. 4 160. 2 11. 2 61. 1 111. 1 161. 1 11. 2 61. 1 111. 1 161. 1 11. 2 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>1127</td><td></td><td>1121</td></th<>						1127		1121
2. 3 52. 2 102. 3 152. 3 3. 1 53. 4 103. 1 153. 1 4. 1 54. 1 104. 4 154. 2 5. 3 55. 1 105. 2 155. 3 6. 4 56. 4 106. 4 157. 2 8. 4 58. 1 108. 3 158. 3 9. 1 59. 3 109. 2 159. 2 10. 1 60. 4 110. 4 160. 2 11. 2 61. 1 111. 1 161. 1 12. 1 62. 1 112. 3 162. 4 13. 3 63. 3 113. 3 163. 1 14. 1 <td< td=""><td>1.</td><td>NA</td><td>51.</td><td></td><td>1</td><td>4</td><td>151.</td><td>4</td></td<>	1.	NA	51.		1	4	151.	4
3. 1 53. 4 103. 1 153. 1 4. 1 54. 1 104. 4 154. 2 5. 3 55. 1 105. 2 155. 3 6. 4 56. 4 106. 4 156. 3 7. 1 57. 2 107. 4 157. 2 8. 4 58. 1 108. 3 158. 3 9. 1 59. 3 109. 2 159. 2 10. 1 60. 4 110. 4 160. 2 11. 2 61. 1 111. 1 161. 1 12. 1 62. 1 1112. 3 162. 4 13. 3 63. 3 115. 3 165. 4 15. 4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
4. 1 54. 1 104. 4 154. 2 5. 3 55. 1 105. 2 155. 3 6. 4 56. 4 106. 4 156. 3 7. 1 57. 2 107. 4 157. 2 8. 4 58. 1 108. 3 158. 3 9. 1 59. 3 109. 2 159. 2 10. 1 60. 4 110. 4 160. 2 11. 2 61. 1 111. 161. 1 12. 1 62. 1 112. 3 162. 4 13. 3 63. 3 113. 3 163. 1 14. 1 64. 2 114. 4 164. 4 15. 4 65. 3 115. 3 165. 4 16. 1 66. 3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5. 3 55. 1 105. 2 155. 3 6. 4 56. 4 106. 4 156. 3 7. 1 57. 2 107. 4 157. 2 8. 4 58. 1 108. 3 159. 2 9. 1 59. 3 109. 2 159. 2 10. 1 60. 4 110. 4 160. 2 11. 2 61. 1 111. 1 161. 1 11. 2 61. 1 111. 1 161. 1 11. 4 62. 1 112. 3 162. 4 13. 3 63. 3 113. 3 165. 4 15. 4 65. 3 115. 3 165. 4 15. 4 <								
6. 4 56. 4 106. 4 156. 3 7. 1 57. 2 107. 4 157. 2 8. 4 58. 1 108. 3 158. 3 9. 1 59. 3 109. 2 159. 2 10. 1 60. 4 110. 4 160. 2 11. 2 61. 1 111. 1 161. 1 11. 1 66. 1 111. 1 161. 1 13. 3 63. 3 113. 3 163. 1 14. 1 64. 2 114. 4 164. 4 15. 4 65. 3 115. 3 165. 4 16. 1 66. 3 117. 2 167. 4 166. 4 170.								
7. 1 57. 2 107. 4 157. 2 8. 4 58. 1 108. 3 158. 3 9. 1 59. 3 109. 2 159. 2 10. 1 60. 4 110. 4 160. 2 11. 2 61. 1 111. 1 161. 1 12. 1 62. 1 112. 3 162. 4 13. 3 63. 3 113. 3 163. 1 14. 1 64. 2 114. 4 164. 4 15. 4 65. 3 115. 3 165. 4 16. 1 66. 3 118. 4 166. 4 17. 1 67. 3 117. 2 167. 4 18. NA								
8. 4 58. 1 108. 3 158. 3 9. 1 59. 3 109. 2 159. 2 10. 1 60. 4 110. 4 160. 2 11. 2 61. 1 111. 1 161. 1 11. 2 61. 1 111. 1 161. 1 13. 3 63. 3 1113. 3 163. 1 14. 1 64. 2 114. 4 164. 4 15. 4 65. 3 115. 3 165. 4 16. 1 66. 3 116. 4 166. 4 17. 1 67. 3 117. 2 167. 4 18. NA 68. 1 118. 4 166. 2 20. 1 70. 4 120. 4 170. 3 171. 1 122. <								
9. 1 59. 3 109. 2 159. 2 110. 1 60. 4 110. 4 160. 2 111. 2 61. 1 111. 1 161. 1 12. 1 62. 1 112. 3 162. 4 13. 3 63. 3 113. 3 163. 1 14. 1 64. 2 114. 4 164. 4 155. 4 65. 3 115. 3 165. 4 16. 1 66. 3 115. 3 165. 4 16. 1 66. 3 116. 4 166. 4 17. 1 67. 3 117. 2 167. 4 18. NA 68. 1 118. 4 168. 2 19 1 69. 1 119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 78. 1 128. 2 178. 3 29. 2 79. 1 129. 3 179. 4 30. 2 80. 1 130. 1 180. 3 31. 4 81. 4 131. 3 181. 2 29. 2 79. 1 129. 3 179. 4 30. 2 80. 1 130. 1 180. 3 31. 4 81. 4 131. 3 181. 2 33. 3 82. 3 132. 1 180. 3 34. 4 133. 3 184. 4 35. 2 84. 4 134. 3 184. 4 35. 2 88. 4 136. 1 188. 3 39. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 44. 4 94. 1 144. 3 194. 2 44. 4 94. 1 144. 3 194. 2 44. 4 99. 1 149. 1 199. 1								
10. 1 60. 4 110. 4 160. 2 11. 2 61. 1 111. 1 161. 1 12. 1 62. 1 112. 3 162. 4 13. 3 63. 3 113. 3 163. 1 14. 1 64. 2 114. 4 164. 4 15. 4 66. 3 115. 3 165. 4 16. 1 66. 3 116. 4 166. 4 17. 1 67. 3 117. 2 167. 4 18. NA 68. 1 118. 4 168. 2 19 1 69. 1 119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 72. <								
11. 2 61. 1 111. 1 161. 1 12. 1 62. 1 112. 3 162. 4 13. 3 63. 3 113. 3 163. 1 14. 1 64. 2 114. 4 164. 4 15. 4 65. 3 116. 4 166. 4 16. 1 66. 3 116. 4 166. 4 17. 1 67. 3 117. 2 167. 4 18. NA 68. 1 118. 4 168. 2 19 1 69. 1 119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 1 172. 3								
12. 1 62. 1 112. 3 162. 4 13. 3 63. 3 113. 3 163. 1 14. 1 64. 2 114. 4 164. 4 15. 4 65. 3 115. 3 165. 4 16. 1 66. 3 116. 4 166. 4 17. 1 67. 3 117. 2 167. 4 18. NA 68. 1 1118. 4 168. 2 19. 1 69. 1 1119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1								
13. 3 63. 3 113. 3 163. 1 14. 1 64. 2 114. 4 164. 4 15. 4 65. 3 115. 3 165. 4 16. 1 66. 3 116. 4 166. 4 17. 1 67. 3 117. 2 167. 4 18. NA 68. 1 118. 4 168. 2 19 1 69. 1 119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 170. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
14. 1 64. 2 114. 4 164. 4 15. 4 65. 3 115. 3 165. 4 16. 1 66. 3 116. 4 166. 4 17. 1 67. 3 117. 2 167. 4 18. NA 68. 1 118. 4 168. 2 19 1 69. 1 119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
15. 4 65. 3 115. 3 165. 4 16. 1 66. 3 116. 4 166. 4 17. 1 67. 3 117. 2 167. 4 18. NA 68. 1 118. 4 168. 2 19 1 69. 1 119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
16. 1 66. 3 116. 4 166. 4 17. 1 67. 3 117. 2 167. 4 18. NA 68. 1 118. 4 168. 2 19 1 69. 1 119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
17. 1 67. 3 117. 2 167. 4 18. NA 68. 1 118. 4 168. 2 19 1 69. 1 119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 78. 1 129. 3 179. 4 30. 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
18. NA 68. 1 118. 4 168. 2 19 1 69. 1 119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 78. 1 128. 2 178. 3 29. 2 79. 1 129. 3 179. 4 30. 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
19 1 69. 1 119. 4 169. 1 20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 78. 1 128. 2 178. 3 29. 2 79. 1 129. 3 179. 4 30. 2								
20. 1 70. 4 120. 4 170. 3 21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 78. 1 128. 2 178. 3 29. 2 79. 1 129. 3 179. 4 30. 2 80. 1 130. 1 180. 3 31. 4						4		
21. 3 71. 2 121. 3 171. 1 22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 78. 1 128. 2 178. 3 29. 2 79. 1 129. 3 179. 4 30. 2 80. 1 130. 1 180. 3 31. 4 81. 4 131. 3 181. 2 32. 3 82. 3 132. 1 182. 3 33. 4 <td< td=""><td></td><td>1</td><td></td><td>4</td><td></td><td>4</td><td></td><td></td></td<>		1		4		4		
22. 2 72. 1 122. 1 172. 3 23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 78. 1 128. 2 178. 3 29. 2 79. 1 129. 3 179. 4 30. 2 80. 1 130. 1 180. 3 31. 4 81. 4 131. 3 181. 2 33. 3 82. 3 132. 1 182. 3 33. 4		3		2		3		
23. 3 73. 4 123. 3 173. 4 24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 78. 1 128. 2 178. 3 29. 2 79. 1 129. 3 179. 4 30. 2 80. 1 130. 1 180. 3 31. 4 81. 4 131. 3 181. 2 32. 3 82. 3 132. 1 182. 3 33. 3 83. 2 133. 4 183. 4 34. 2 84. 4 134. 3 184. 4 35. 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
24. 1 74. 3 124. 1 174. 3 25. 4 75. 1 125. 1 175. 3 26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 78. 1 128. 2 178. 3 29. 2 79. 1 129. 3 179. 4 30. 2 80. 1 130. 1 180. 3 31. 4 81. 4 131. 3 181. 2 32. 3 82. 3 132. 1 182. 3 33. 3 83. 2 133. 4 183. 4 34. 2 84. 4 134. 3 184. 4 35. 2 85. 1 135. 3 185. 4 SECTION B <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td>				4				
25.				3				3
26. 4 76. 3 126. 1 176. 4 27. 2 77. 2 127. 3 177. 4 28. 2 78. 1 128. 2 178. 3 29. 2 79. 1 129. 3 179. 4 30. 2 80. 1 130. 1 180. 3 31. 4 81. 4 131. 3 181. 2 32. 3 82. 3 132. 1 182. 3 33. 3 83. 2 133. 4 183. 4 34. 2 84. 4 134. 3 184. 4 35. 2 85. 1 135. 3 185. 4 SECTION B 36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
28. 2 78. 1 128. 2 178. 3 29. 2 79. 1 129. 3 179. 4 30. 2 80. 1 130. 1 180. 3 31. 4 81. 4 131. 3 181. 2 32. 3 82. 3 132. 1 182. 3 33. 3 83. 2 133. 4 183. 4 34. 2 84. 4 134. 3 184. 4 35. 2 85. 1 135. 3 185. 4 SECTION B 36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 <		4		3				
29. 2 79. 1 129. 3 179. 4 30. 2 80. 1 130. 1 180. 3 31. 4 81. 4 131. 3 181. 2 32. 3 82. 3 132. 1 182. 3 33. 3 83. 2 133. 4 183. 4 34. 2 84. 4 134. 3 184. 4 35. 2 85. 1 135. 3 185. 4 SECTION B 36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 <	27.	2	77.	2	127.	3	177.	4
30. 2 80. 1 130. 1 180. 3 31. 4 81. 4 131. 3 181. 2 32. 3 82. 3 132. 1 182. 3 33. 3 83. 2 133. 4 183. 4 34. 2 84. 4 134. 3 184. 4 35. 2 85. 1 135. 3 185. 4 SECTION B 36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1	28.	2	78.	1	128.	2	178.	3
31. 4 81. 4 131. 3 181. 2 32. 3 82. 3 132. 1 182. 3 33. 3 83. 2 133. 4 183. 4 34. 2 84. 4 134. 3 184. 4 35. 2 85. 1 135. 3 185. 4 SECTION B 36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 <td>29.</td> <td>2</td> <td>79.</td> <td>1</td> <td>129.</td> <td>3</td> <td>179.</td> <td>4</td>	29.	2	79.	1	129.	3	179.	4
32. 3 82. 3 132. 1 182. 3 33. 3 83. 2 133. 4 183. 4 34. 2 84. 4 134. 3 184. 4 35. 2 85. 1 135. 3 185. 4 SECTION B 36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 94. 1 144. 3 194. 2 <td>30.</td> <td>2</td> <td>80.</td> <td>1</td> <td>130.</td> <td>1</td> <td>180.</td> <td>3</td>	30.	2	80.	1	130.	1	180.	3
33. 3 83. 2 133. 4 183. 4 34. 2 84. 4 134. 3 184. 4 35. 2 85. 1 135. 3 185. 4 SECTION B 36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	31.	4	81.	4	131.	3	181.	2
34. 2 84. 4 134. 3 184. 4 35. 2 85. 1 135. 3 185. 4 SECTION B 36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 <td>32.</td> <td>3</td> <td>82.</td> <td>3</td> <td>132.</td> <td>1</td> <td>182.</td> <td>3</td>	32.	3	82.	3	132.	1	182.	3
35. 2 85. 1 135. 3 185. 4 SECTION B 36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. <td< td=""><td>33.</td><td>3</td><td>83.</td><td>2</td><td>133.</td><td>4</td><td>183.</td><td>4</td></td<>	33.	3	83.	2	133.	4	183.	4
SECTION B 36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 <td>34.</td> <td>2</td> <td>84.</td> <td>4</td> <td>134.</td> <td>3</td> <td>184.</td> <td>4</td>	34.	2	84.	4	134.	3	184.	4
36. 2 86. 4 136. 1 186. 1 37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 <t< td=""><td>35.</td><td>2</td><td>85.</td><td>1</td><td>135.</td><td>3</td><td>185.</td><td>4</td></t<>	35.	2	85.	1	135.	3	185.	4
37. 1 87. 1 137. 4 187. 1 38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 149. 1 199. 1			ı	SECT	ION B		ı	
38. 1 88. 1 138. 2 188. 3 39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 199. 1 149. 1 199. 1	36.	2	86.	4	136.	1	186.	1
39. 1 89. 1 139. 3 189. 1 40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	37.	1	87.	1	137.	4	187.	1
40. 2 90. 1 140. 1 190. 4 41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	38.	1	88.	1	138.	2	188.	3
41. 4 91. 4 141. 3 191. 4 42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	39.	1	89.	1	139.	3	189.	1
42. 4 92. 3 142. 4 192. 4 43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	40.	2	90.	1	140.	1	190.	4
43. 4 93. 4 143. 3 193. 4 44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	41.	4	91.	4	141.	3	191.	4
44. 4 94. 1 144. 3 194. 2 45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	42.	4	92.	3	142.	4	192.	4
45. 3 95. 1 145. 1 195. 4 46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	43.	4	93.	4	143.	3	193.	4
46. 1 96. 3 146. 3 196. 4 47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	44.	4	94.	1	144.	3	194.	2
47. NA 97. 2 147. 3 197. 3 48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	45.	3	95.	1	145.	1	195.	4
48. 2 98. 1 148. 1 198. 1 49. 1 99. 1 149. 1 199. 1	46.	1	96.	3	146.	3	196.	4
49. 1 99. 1 149. 1 199. 1	47.	NA	97.	2	147.	3	197.	3
	48.	2	98.	1	148.	1	198.	1
50. 1 100. 3 150. 4 200. 2	49.	1	99.	1	149.	1	199.	1
	50.	1	100.	3	150.	4	200.	2

Physics: Section-A (Q. No. 1 to 35)

- The ratio of radius of gyration of a solid sphere of mass M and radius R about its own axis to the radius of gyration of the thin hollow sphere of same mass and radius about its axis is :
 - (1) 2:5
- (2) 5:2
- OX 3:5
- (4) 5:3
- A 12 V. 60 W lamp is connected to the 2 secondary of a step down transformer, whose primary is connected to ac mains of 220 V. Assuming the transformer to be ideal, what is the current in the primary winding?
 - (1) 3.7 A
- (2) 0.37 A
- (26) 0.27 A
- (4) 2.7 A
- 3 If the galvanometer G does not show any deflection in the circuit shown, the value of R is given by:

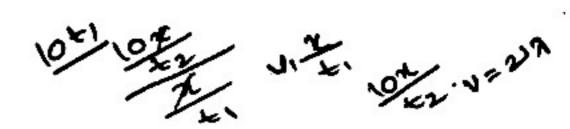


- 400 Ω
- (4) 50 Ω
- A full wave rectifier circuit consists of two p-n junction diodes, a centre-tapped transformer, capacitor and a load resistance. Which of these components remove the ac ripple from the rectified output?


(Capacitor

- (2) Load resistance
- (3) A centre-tapped transformer
- (4) p-n junction diodes

H2_English |


- The work functions of Caesium (Cs), Potassium (K) and Sodium (Na) are 2.14 V. 2.30 eV and 2.75 eV respectively. If incident electromagnetic radiation has an incident energy of 2.20 eV, which of these photosensitive surfaces may photoelectrons?
 - (1) K only
 - (2) Na only
 - (8) Cs only
 - (4) Both Na and K

- The ratio of frequencies of fundamental harmonic produced by an open pipe to that of closed pipe having the same length is:
 - (1) 1:3
- (3) 1:2
- 7 $\frac{\sim 10^{10}}{5}$ The amount of energy required to form a soap bubble of radius 2 cm from a soap solution is nearly: (surface tension of soap solution) $= 0.03 \text{ N m}^{-1}$

 - 3.01×10⁻⁴J (2) 50.1×10⁻⁴J
 - 30.16×10-4J (4) 5.06×10-4J
 - Let a wire be suspended from the ceiling (rigid support) and stretched by a weight Wattached at its free end. The longitudinal stress at any point of cross-sectional area A of the wire is:
 - (1) W/2A
- (3) 2W/A
- 'A vehicle travels half the distance with speed o and the remaining distance with speed 20. Its average speed is:

[Contd...

10 For Young's double slit experiment, two statements are given below:

Statement I: If screen is moved away from the plane of slits, angular separation of the fringes remains constant.

Statement II: If the monochromatic source is replaced by another monochromatic source of larger wavelength, the angular separation of fringes decreases.

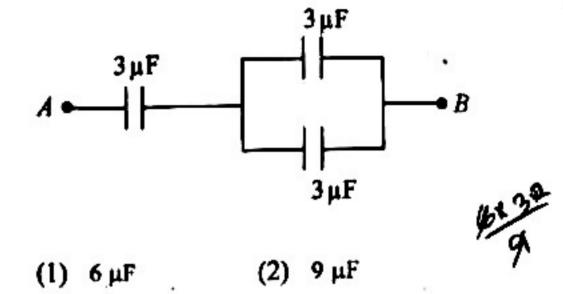
In the light of the above statements, choose the *correct* answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- (3) Both Statement I and Statement II are true.

Both Statement I and Statement II are false.

11 Light travels a distance x in time t₁ in air and 10x in time t₂ in another denser medium. What is the critical angle for this medium?

(1)
$$\sin^{-1}\left(\frac{t_1}{10t_2}\right)$$
 $\sin^{-1}\left(\frac{10t_1}{t_2}\right)$


(3)
$$\sin^{-1}\left(\frac{t_2}{t_1}\right)$$
 (4) $\sin^{-1}\left(\frac{10t_2}{t_1}\right)$

- An ac source is connected to a capacitor C.

 Due to decrease in its operating frequency:

 displacement current decreases.
 - (2) capacitive reactance remains constant
 - (3) capacitive reactance decreases,
 - (4) displacement current increases.

13 The equivalent capacitance of the system shown in the following circuit is:

(4) 3 μF

- In a plane electromagnetic wave travelling in free space, the electric field component oscillates sinusoidally at a frequency of 2.0×10^{10} Hz and amplitude 48 V m^{-1} . Then the amplitude of oscillating magnetic field is: (Speed of light in free space = 3×10^8 m s⁻¹)
 - -(1) 1.6×10⁻⁷T

(3) 2 μF

- (2) 1.6×10^{-6} T
- (3) 1.6×10^{-9} T
- (4) 1.6×10^{-8} T
- In hydrogen spectrum, the shortest wavelength in the Balmer series is λ. The shortest wavelength in the Bracket series is:
 - (1) 9 **λ**
- (2) 16λ
- (3) 2λ
- £4) 4 A
- 16 A metal wire has mass (0.4 ± 0.002) g, radius (0.3 ± 0.001) mm and length (5 ± 0.02) cm. The maximum possible percentage error in the measurement of density will nearly be:
 - (1) 1.6%
- (2) 1.4%
- (3) 1.2%
- (4) 1.3%

H2 English]

\sub.

[Contd...

17 A football player is moving southward and suddenly turns eastward with the same speed to avoid an opponent. The force that acts on the player while turning is:

along north-east

- along south-west
- (3) along eastward
- (4) along northward
- The temperature of a gas is -50° C. To what temperature the gas should be heated so that the rms speed is increased by 3 times?

(X) 3097 K

(2) 223 K

(3) 669° C (4) 3295° C

Resistance of a carbon resistor determined 19 from colour codes is $(22000 \pm 5\%) \Omega$. The colour of third band must be :

(1) Orange

(2) Yellow

(3) Red

(4) Green

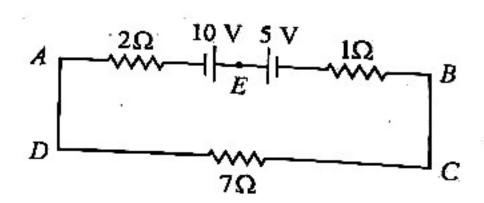
A bullet is fired from a gun at the speed of 280 m s⁻¹ in the direction 30° above the horizontal. The maximum height attained by

the bullet is $(g = 9.8 \text{ m s}^{-2}, \sin 30^{\circ} = 0.5)$:

- (1) 1000 m
- (2) 3000 m
- (3) 2800 m
- (4) 2000 m
- 21 A Carnot engine has an efficiency of 50% when its source is at a temperature 327° C. The temperature of the sink is:
 - (1) 100° C
- (2) 200° C
- (4) 15° C
- In a series LCR circuit, the inductance L is 22 10 mH, capacitance C is 1 µF and resistance R is 100Ω . The frequency at which resonance occurs is:
 - 1.59 rad/s

(8) 15.9 rad/s

- If $\oint \vec{E} \cdot d\vec{S} = 0$ over a surface, then: 23
 - (1) all the charges must necessarily be inside the surface.
 - (2) the electric field inside the surface is necessarily uniform.
 - (2) the number of flux lines entering the surface must be equal to the number of flux lines leaving it.
 - (4) the magnitude of electric field on the surface is constant.
 - Two bodies of mass m and 9m are placed at a distance R. The gravitational potential on the line joining the bodies where the gravitational field equals zero, will be (G = gravitational constant):


(1)
$$-\frac{16\,Gm}{R}$$
 (2) $-\frac{20\,Gm}{R}$

(2)
$$-\frac{20 \, Gm}{R}$$

$$(3) -\frac{8 Gm}{R}$$

$$(4) - \frac{12 Gm}{R}$$

The magnitude and direction of the current in the following circuit is

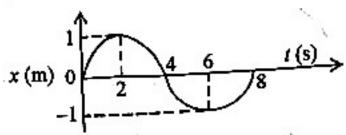
- . (1) $\frac{5}{9}$ A from A to B through E
 - (2) 1.5 A from B to A through E
 - (3) 0.2 A from B to A through E
 - (4) 0.5 A from A to B through E

- 26 The minimum wavelength of X-rays produced by an electron accelerated through a potential difference of V volts is proportional to:
 - \mathcal{L}
- (2) V^2
- (3) √*v*
- $(4) \quad \frac{1}{\nu}$
- 27 The angular acceleration of a body, moving along the circumference of a circle, is:
 - (1) along the tangent to its position
 - (2) along the axis of rotation
 - (3) along the radius, away from centre
 - along the radius towards the centre
- The magnetic energy stored in an inductor of inductance 4 μH carrying a current of 2 A is:
 - (1) 8 mJ
- (2) 8 µJ
- (21) 4 µ.
- (4) 4 mJ
- The half life of a radioactive substance is 20 minutes. In how much time, the activity of substance drops to $\left(\frac{1}{16}\right)^{th}$ of its initial value?
 - (1) 60 minutes
- (2) 80 minutes
- (3) 20 minutes
- (4) 40 minutes
- The potential energy of a long spring when stretched by 2 cm is U. If the spring is stretched by 8 cm, potential energy stored in it will be:
 - (1) **8**U
- (2) 16U
- (3) 2U
- (4) 4U
- H2_English |

- 31 The venturi-meter works on:
 - (1) The principle of parallel axes
 - (2) The principle of perpendicular axes
 - (3) Huygen's principle
 - (4) Bernoulli's principle
- 32 The net magnetic flux through any closed surface is:
 - (1) Infinity
- (2) Negative
- (2) Zero
- (4) Positive
- 33 Given below are two statements:

Statement I: Photovoltaic devices can convert optical radiation into electricity.

Statement II: Zener diode is designed to operate under reverse bias in breakdown region.


In the light of the above statements, choose the *most appropriate* answer from the options given below:

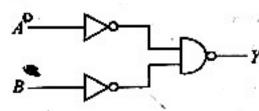
- (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.
- 34 The errors in the measurement which arise due to unpredictable fluctuations in temperature and voltage supply are:
 - (1) Least count errors
 - (2) Random errors
 - (3) Instrumental errors
 - (4) Personal errors
- An electric dipole is placed at an angle of 30° with an electric field of intensity $2 \times 10^5 \text{ N C}^{-1}$. It experiences a torque equal to 4 N m. Calculate the magnitude of charge on the dipole, if the dipole length is 2 cm.
 - (1) 4 mC
- (2) 2 mC
- (3) 8 mC
- (4) 6 mC

Contd...

Physics: Section-B (Q. No. 36 to 50)

The x-t graph of a particle performing simple 36 harmonic motion is shown in the figure. The acceleration of the particle at t=2 s is:

- (3) $\frac{\pi^2}{8} \text{ m s}^{-2}$ (4) $-\frac{\pi^2}{9} \text{ m s}^{-2}$
- A horizontal bridge is built across a river. 37 A student standing on the bridge throws a small ball vertically upwards with a velocity 4 m s⁻¹. The ball strikes the water surface after 4 s. The height of bridge above water surface is (Take $g = 10 \text{ m s}^{-2}$):
 - (1) 64 m
- (2) 68 m
- (3) 56 m (4) 60 m
- A wire carrying a current I along the positive 38 x-axis has length L. It is kept in a magnetic field $\vec{B} = (2\hat{i} + 3\hat{j} - 4\hat{k})$ T. The magnitude of the magnetic force acting on the wire is:
 - (1) 5 IL
- (2) √3 /L
- (3) 3 IL
- (4) . √5 IL
- The resistance of platinum wire at 0°C is 39 2Ω and 6.8Ω at 80° C. The temperature coefficient of resistance of the wire is :" (1) 3×10⁻² °C⁻¹ (2) 3×10⁻¹ °C⁻¹ (3) 3×10⁻⁴ °C⁻¹ (4) 3×10⁻³ °C⁻¹


- 40 The radius of inner most orbit of hydrogen atom is 5.3×10⁻¹¹ m. What is the radius of third allowed orbit of hydrogen atom?
 - (1) 1.59 Å
- (3) 0.53 Å
- (4) 1.06 Å

H2_English]

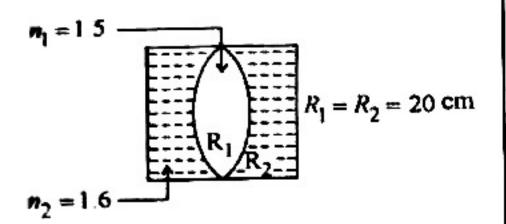
- 10 resistors, each of resistance R are 41 connected in series to a battery of emf E and negligible internal resistance. Then those are connected in parallel to the same battery, the current is increased n times. The value of n is :
 - (1) 1
- (3) 10
- A satellite is orbiting just above the surface 42 of the earth with period T. If d is the density of the earth and G is the universal constant

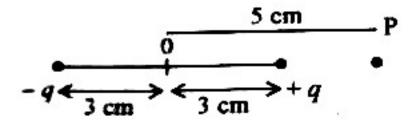
of gravitation, the quantity $\frac{3\pi}{Gd}$ represents:

- (1) T^3
- (3) T
- Two thin lenses are of same focal lengths 43 (f), but one is convex and the other one is concave. When they are placed in contact with each other, the equivalent focal length of the combination will be:
 - (1) f/2
- (2) Infinite
- (3) Zero
- For the following logic circuit, the truth table 44 is:

- (1)(2)
- (3) A

· [Contd.



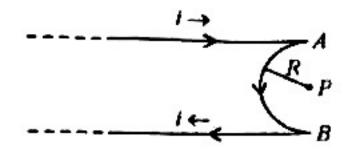

A bullet from a gun is fired on a rectangular 45 wooden block with velocity n. When bullet travels 24 cm through the block along its length horizontally, velocity of bullet

becomes $\frac{n}{3}$. Then it further penetrates into the block in the same direction before coming to rest exactly at the other end of the block. The total length of the block is:

- (1) 28 cm
- (2) 30 cm
- (3) 27 cm
- (4) 24 cm
- In the figure shown here, what is the equivalent focal length of the combination of lenses (Assume that all layers are thin)?

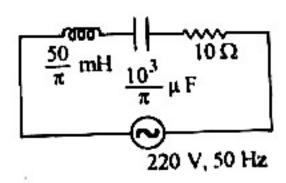
- (1) 100 cm
- (2) 50 cm
- (3) 40 cm
- (4) 40 cm
- An electric dipole is placed as shown in the 47 figure.

The electric potential (in 10² V) at point P due to the dipole is $(\epsilon_0 = \text{permittivity of free})$


space and
$$\frac{1}{4\pi \epsilon_0} = K$$
):

- (1) $\left(\frac{8}{3}\right)qK$
- $(2) \ \left(\frac{8}{3}\right) qK$
- (3) $\left(\frac{3}{8}\right)$ qK
- $(4) \left(\frac{5}{8}\right) qK$

H2_English |


1

A very long conducting wire is bent in a semi-circular shape from A to B as shown in figure. The magnetic field at point P for steady current configuration is given by:

- (1) $\frac{\mu_0 i}{4R} \left[1 \frac{2}{\pi} \right]$ pointed away from page
- (2) $\frac{\mu_0 i}{4R} \left[1 \frac{2}{\pi} \right]$ pointed into the page
- (3) $\frac{\mu_0 i}{AR}$ pointed into the page
- (4) $\frac{\mu_0^i}{AP}$ pointed away from the page
- Calculate the maximum acceleration of a 49 moving car so that a body lying on the floor of the car remains stationary. The coefficient of static friction between the body and the floor is $0.15 \text{ (g} = 10 \text{ m s}^{-2})$.
 - (2) 1.5 m s⁻² (2) 50 m s⁻²

 - (3) $1.2 \,\mathrm{m\,s^{-2}}$ (4) $150 \,\mathrm{m\,s^{-2}}$
- The net impedance of circuit (as shown in 50 figure) will be:

- (1) 5√5Ω
- (2) 25Ω
- (21) 10√2Ω
- (4) 15Ω

Contd...

CL .		_			
Chemistry	Continu 4	10			
	Section-A	163.	N	51	4- DE
		1.4	LIU.	- 31	TO MAY

51 Amongst the following, the total number of species NOT having eight electrons around central atom in its outer most shell, is

NH3, AlCI3, BeCl2, CCl4, PCl5;

(1) 4

(2) 1

DY 3

(4) 2

(1) 52 Some tranquilizers are listed below. Which one from the following belongs to barbiturates?

(1) Valium

24

(2) Veronal

S

(3) Chlordiazepoxide

(3) 1.12 g (4) 1.76 g

(4) Meprobamate

Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: A reaction can have zero activation energy.

Reasons R: The minimum extra amount of energy absorbed by reactant molecules so that their energy becomes equal to threshold value, is called activation energy.

In the light of the above statements, choose the correct answer from the options given below:

(1) A is true but R is false, soft

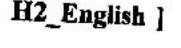
(A) is false but R is true. (1)

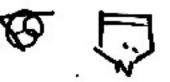
(3) Both A and R are true and R is the correct explanation of A. (1)

Both A and R are true and R is NOT the correct explanation of A

The given compound 54

is an example of


allylic halide


vinylic halide

S

(3) benzylic halide

(4) aryl halide

The number of σ bonds, π bonds and lone pair of electrons in pyridine, respectively are:

(11, 3, 1)

(2) 12, 2, 1

(3) 11, 2, 0

(4) 12, 3, 0

The right option for the mass of CO2 56 produced by heating 20 g of 20% pure limestone is (Atomic mass of Ca = 40)

 $CaCO_3 \xrightarrow{1200 \text{ K}} CaO + CO_2$

(1) 2.64 g

(2) 1.32 g

57 Which one is an example of heterogenous catalysis?

> (1) Decomposition of ozone in presence of nitrogen monoxide.

> (2) Combination between dinitrogen and dihydrogen to form ammonia in the presence of finely divided iron.

> (3) Oxidation of sulphur dioxide into sulphur trioxide in the presence of oxides of nitrogen.

(4) Hydrolysis of sugar catalysed by H+ ions.

(58) Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

> Assertion A: Metallic sodium dissolves in liquid ammonia giving a deep blue solution, which is paramagnetic.

Reasons R: The deep blue solution is due to the formation of amide.

In the light of the above statements, choose the correct answer from the options given below:

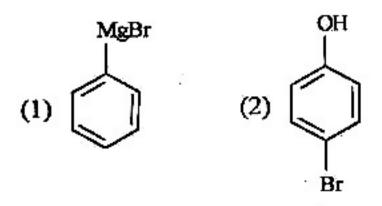
(1) A is true but R is false.

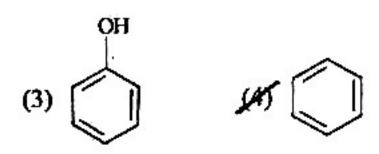
(2) A is false but R is true.

(3) Both A and R are true and R is the correct explanation of A.

(4) Both A and R are true but R is NOT the correct explanation of A.

[Contd...


8-8-X29



Which one of the following statements is correct?

- The bone in human body is an inert and unchanging substance.
- (2) Mg plays roles in neuromuscular function and interneuronal transmission.
- The daily requirement of Mg and Ca in the human body is estimated to be 0.2 0.3 g.
- (4) All enzymes that utilise ATP in phosphate transfer require Ca as the cofactor.
- 60 Identify the product in the following reaction:

$$\begin{array}{c}
\stackrel{\bullet}{\text{N}_{2}}\overline{\text{Cl}} \\
\stackrel{(i) \text{ Cu}_{2}\text{Br}_{2}}{\text{(ii) Mg/dry ether}} \rightarrow \text{Product} \\
\stackrel{(ii) \text{ H}_{2}\text{O}}{\text{(iii) H}_{2}\text{O}}
\end{array}$$

- For a certain reaction, the rate = k[A]²[B], when the initial concentration of A is tripled keeping concentration of B constant, the initial rate would
 - increase by a factor of nine.
 - (2) increase by a factor of three.
 - (3) decrease by a factor of nine.
 - (4) increase by a factor of six.

Which of the following statements are NOT correct?

- A. Hydrogen is used to reduce heavy metal oxides to metals.
- B. Heavy water is used to study reaction mechanism.
- C. Hydrogen is used to make saturated fats from oils.
- D. The H-H bond dissociation enthalpy is lowest as compared to a single bond between two atoms of any element.
- E. Hydrogen reduces oxides of metals that are more active than iron.

Choose the most appropriate answer from the options given below:

(1) D, E only

(2) A, B, C only (2) B, C, D, E only (4) B, D only

- 63 Homoleptic complex from the following complexes is:
 - (1) Pentaamminecarbonatocobalt (III) chloride
 - (2) Triamminetriaquachromium (III) chloride
 - (2) Potassium trioxalatoaluminate (III)
 - (4) Diamminechloridonitrito N platinum (II)
- 64 In Lassaigne's extract of an organic compound, both nitrogen and sulphur are present, which gives blood red colour with Fe³⁺ due to the formation of -

(1)
$$\left[\operatorname{Fe}(\operatorname{CN})_{5}\operatorname{NOS}\right]^{4-}$$

(2)
$$\left[\operatorname{Fe}(SCN)\right]^{2+}$$

(3)
$$Fe_4$$
 $\left[Fe(CN)_6\right]_3 \cdot xH_2O$

(4) NaSCN

1)

65 Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: In equation $\Delta_r G = -nFE_{cell}$, value of $\Delta_r G$ depends on n.

Reasons R: Ecell is an intensive property and A,G is an extensive property.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is true but R is false.
- (2) A is false but R is true.
- Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true and R is NOT the correct explanation of A.
- 66 Identify product (A) in the following reaction:

 $\frac{Z_{n-Hg}}{conc. HCI} \rightarrow (A) + 2H_{2}O$

The relation between n_m , $(n_m = the number)$ of permissible values of magnetic quantum number (m)) for a given value of azimuthal quantum number (1), is

(1)
$$n_m = 2l^2 + 1$$

(1)
$$n_m = 2l^2 + 1$$
 (2) $n_m = l + 2$

$$(3) l = \frac{n_m - 1}{2}$$
 (4) $l = 2n_m + 1$

(4)
$$l = 2n_m + 1$$

The stability of Cu2+ is more than Cu+ salts (68) in aqueous solution due to -

(2) hydration energy.

(2) second ionisation enthalpy.

(3) first ionisation enthalpy.

(4) enthalpy of atomization.

Match List - I with List - II : 69

List - I

List - II

A. Coke

Carbon atoms are sp3 hybridised.

B. Diamond

Used as a dry П,

lubricant

C. Fullerene

III. Used as a

reducing agent

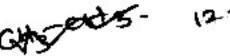
D. Graphite

10

IV. Cage like

molecules

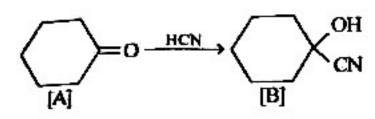
Choose the correct answer from the options given below:


A-III, B-I, C-IV, D-II

(2) A-III, B-IV, C-I, D-II

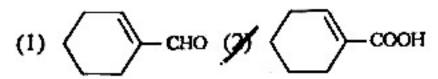
(3) A-II, B-IV, C-I, D-III

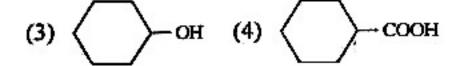
(4). A-IV, B-I, C-II, D-III


- Weight (g) of two moles of the organic compound, which is obtained by heating sodium ethanoate with sodium hydroxide in presence of calcium oxide is:
 - (1) 30

(2) 18

(3) 16

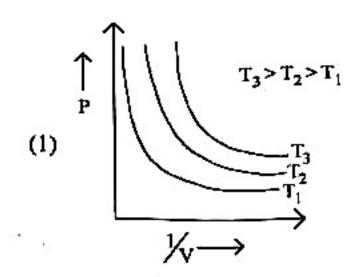

WY 32

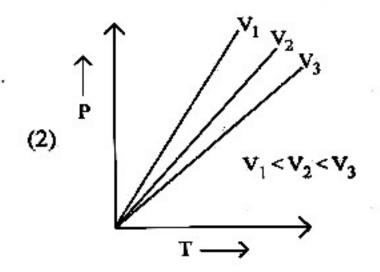

71 Complete the following reaction:

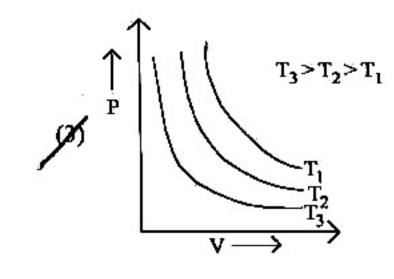
 $\xrightarrow{\text{cone. H}_2SO_4} [C]$

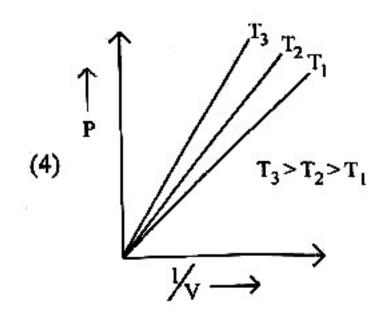
[C] is _____

72 Given below are two statements:

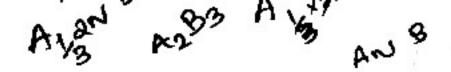

Statement I: A unit formed by the attachment of a base to 1' position of sugar is known as nucleoside


Statement II: When nucleoside is linked to phosphorous acid at 5'-position of sugar moiety, we get nucleotide.


In the light of the above statements, choose the correct answer from the options given below:


- Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.

73 Which amongst the following options is correct graphical representation of Boyle's Law?



ign = conti

11

- 74 A compound is formed by two elements A and B. The element B forms cubic close packed structure and atoms of A occupy 1/3 of tetrahedral voids. If the formula of the compound is A_xB_y, then the value of x + y is in option
 - (1) 3

(2) 5

- Intermolecular forces are forces of attraction 75 and repulsion between interacting particles that will include:
 - A. dipole dipole forces.
 - B. dipole induced dipole forces.
 - C. hydrogen bonding.
 - D. covalent bonding.
 - dispersion forces.

Choose the most appropriate answer from the options given below:

- (1) A, B, C, E are correct.
- (2) A, C, D, E are correct.
- (3) B, C, D, E are correct.
- (4) A, B, C, D are correct.
- 76 The correct order of energies of molecular orbitals of N2 molecule, is:
 - (1) $\sigma ls < \sigma^* ls < \sigma 2s < \sigma^* 2s < \sigma 2p_z <$

$$\sigma^* 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y)$$

(2) $\sigma ls < \sigma^* ls < \sigma 2s < \sigma^* 2s < \left(\pi 2p_x = \pi 2p_y\right) < \sigma^* 2s < \left(\pi 2p_x = \pi 2p_y\right) < \sigma^* 2s < \left(\pi 2p_x = \pi 2p_y\right) < \sigma^* 2s < \sigma^* 2s$

$$(\pi^* 2p_x = \pi^* 2p_y) < \sigma 2p_z < \sigma^* 2p_z$$

(3) $\sigma ls < \sigma^* ls < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) <$

$$\sigma 2p_z < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z$$

- A) σ Is < σ* Is < σ 2s < σ* 2s < σ 2p_z <
 - $(\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z$

H2_English]

- Taking stability as the factor, which one of 77 following represents the relationship?
 - (1) AlCl > AlCl₃ (2) TII > TII₃
 - (3) $TlCl_3 > TlCl$ (4) $Inl_3 > InI$
- The conductivity of centimolar solution of 78 KCI at 25°C is 0.0210 ohm-1 cm-1 and the resistance of the cell containing the solution at 25°C is 60 ohm. The value of cell constant is -
 - 1.26 cm⁻¹ (2) 3.34 cm⁻¹
 - (3) 1.34 cm⁻¹
- (4) 3.28 cm⁻¹
- Which of the following reactions will NOT 79 give primary amine as the product?

$$(H_3NC \xrightarrow{(i) \text{LiAIH}_4} \text{Product}$$

- (2) $CH_3CONH_2 \xrightarrow{(i) LiAlH_4} Product$
- (3) CH₃ CONH₂ $\xrightarrow{Br_2/KOH}$ Product
- (4) CH₃CN $\xrightarrow{(i) \text{LiAlH}_4}$ Product
- 80 The element expected to form largest ion to achieve the nearest noble gas configuration is:
- (2) Na
- (3) O
- (4) F

12

[Contd...

81 Which amongst the following molecules on polymerization produces neoprene?

(1)
$$H_2C = CH - C = CH$$

$$CH_3$$
 $H_2C=C-CH=CH_2$

(3)
$$H_2C = CH - CH = CH_2$$

(4)
$$H_2C = C - CH = CH_2$$

82 Consider the following reaction and identify the product (P).

$$\begin{array}{c|c}
CH_3 - CH - CH - CH_3 \\
 & | & | \\
 & CH_3 - OH
\end{array}$$

$$\begin{array}{c}
HBr \\
 & Product (P)
\end{array}$$
3 - Methylbutan-2-ol

(4)
$$CH_3 CH = CH - CH_3$$

- 83 Select the correct statements from the following:
 - A. Atoms of all elements are composed of two fundamental particles.
 - B. The mass of the electron is $\sqrt{9.10939 \times 10^{-31}}$ kg.
 - C. All the isotopes of a given element show same chemical properties.
 - D. Protons and electrons are collectively known as nucleons.
 - E. Dalton's atomic theory, regarded the atom as an ultimate particle of matter.

Choose the correct answer from the options given below:

- (1) A and E only
- (2) B, C and E only
- (3) A, B and C only
- (4) C, D and E only
- 84 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: Helium is used to dilute oxygen in diving apparatus.

Reasons R: Helium has high solubility in O_2 .

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) A is true but R is false.
- (2) A is false but R is true.
- Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true and R is NOT the correct explanation of A.
- 85 Amongst the given options which of the following molecules / ion acts as a Lewis acid?
 - M BF2
- (2) OH-
- (3) NH₃
- (4) H₂O

Chemistry: Section-B (Q. No. 86 to 100)

86 Match List - I with List - II :

List - I (Oxoacids List - II (Bonds)
of Sulphur)

- A. PeroxodisulI. Two S-OH, Four S=O,
 phuric acid
 One S-O-S
- B. Sulphuric acid II. Two S-OH, One S=O
- C. Pyrosulphuric III. Two S-OH, Four S=O,
 acid One S-O-O-S
- D. Sulphurous acid IV. Two S-OH, Two S=O Choose the correct answer from the options given below:
 - (1) A-I. B-III. C-IV. D-II X
 - (2) A-III, B-IV, C-II, D-1
- (3) A-I. B-III, C-II, D-IV → A-III, B-IV, C-I, D-II

87 Consider the following reaction:

$$CH_2-O-\underbrace{\qquad \qquad HI}_{\Delta} A+B$$

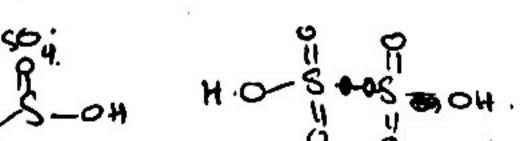
Identify products A and B.

$$A = CH_2I$$
 and $B = CH_2I$

(2)
$$A = \left(\begin{array}{c} \\ \\ \end{array} \right) - CH_3 \text{ and } B = \left(\begin{array}{c} \\ \\ \end{array} \right) - I$$

(3)
$$A = CII_3$$
 and $B = CII_3$

(4)
$$A = CH_2OH \text{ and } B = I$$


- The equilibrium concentrations of the species in the reaction $A + B \rightleftharpoons C + D$ are 2, 3, 10 and 6 mol L^{-1} , respectively at 300 K. ΔG° for the reaction is (R = 2 cal / mol K)
 - (1) 1381.80 cal
 - (2) 13.73 cal
 - (3) 1372.60 cal
 - (4) 137.26 cal
- 89 Identify the major product obtained in the following reaction:

$$\bigcirc_{H}^{O} + 2 \left[Ag(NH_3)_2 \right]^{+} +$$

3-OH → major product

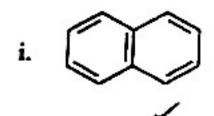
- 90 Pumice stone is an example of -
 - (1) solid sol
- (2) foam
- (3) sol
- (4) gel

H2_English |

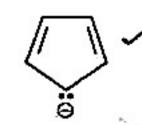
[Contd...

Which amongst the following options is the correct relation between change in enthalpy and change in internal energy?

(1)
$$\Delta H - \Delta U = -\Delta nRT$$


(2)
$$\Delta H + \Delta U = \Delta nR$$

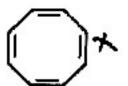
(3)
$$\Delta H = \Delta U - \Delta n_g RT$$

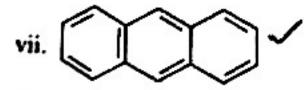

92 The reaction that does NOT take place in a blast furnace between 900 K to 1500 K temperature range during extraction of iron is:

2101

93 Consider the following compounds/species:

ii.


iii. 📗 🛧



v.

..:

The number of compounds/species which obey Huckel's rule is _____.

- (1) 2
- (2) 5
- 185 4
- (4) 6

H2_English]

94 Which amongst the following will be most readily dehydrated under acidic conditions?

95 What fraction of one edge centred octahedral void lies in one unit cell of fcc?

1 16 1

- (2) $\frac{1}{12}$
- (3) $\frac{1}{2}$
- (4) $\frac{1}{3}$

96 Identify the final product [D] obtained in the following sequence of reactions.

$$CH_3CHO \xrightarrow{i) LiAlH_4} [A] \xrightarrow{H_2SO_4} [B]$$

$$\xrightarrow{\text{HBr}} [C] \xrightarrow{\text{Na/dry ether}} [D]$$

- (1) C₄H₁₀
- (2) $HC = C^{\Theta} Na^+$

97 Given below are two statements:

Statement I: The nutrient deficient water bodies lead to eutrophication.

Statement II: Eutrophication leads to decrease in the level of oxygen in the water bodies.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is correct but Statement II is false.
- Statement I is incorrect but Statement II is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.

- 98 Which of the following statements are INCORRECT?
 - A. All the transition metals except scandium form MO oxides which are ionic.
 - B. The highest oxidation number corresponding to the group number in transition metal oxides is attained in Sc₂O₃ to Mn₂O₇.
 - C. Basic character increases from V₂O₃ to V₂O₄ to V₂O₅.
 - D. V₂O₄ dissolves in acids to give VO₄ salts.
 - E. CrO is basic but Cr₂O₃ is amphoteric.
 Choose the correct answer from the options given below:
 - (1) C and D only
 (2) B and C only
 (3) A and E only
 (4) B and D only
- 99 Which complex compound is most stable?
 - (1) $\left[\text{CoCl}_{2}(\text{en})_{2}\right]\text{NO}_{3}$ (2) $\left[\text{Co}(\text{NH}_{3})_{6}\right]_{2}(\text{SO}_{4})_{3}$ (3) $\left[\text{Co}(\text{NH}_{3})_{4}(\text{H}_{2}\text{O})\text{Br}\right](\text{NO}_{3})_{2}$ (4) $\left[\text{Co}(\text{NH}_{3})_{3}(\text{NO}_{3})_{3}\right]$
- On balancing the given redox reaction, a $Cr_2O_7^{2-} + b SO_3^{2-} (aq) + c H^+ (aq) \rightarrow Q$ $2a Cr^{3+} (aq) + b SO_4^{2-} (aq) + \frac{c}{2} H_2O(\ell)$ the coefficients a, b and c are found to the respectively.
 - respectively (1) 1, 8, 3
 (2) 8, 1, 3 *
 (3) 1, 3, 8
 (4) 3, 8, 1 ×

Botany: Section-A (Q. No. 101 to 135)

- 101 What is the role of RNA polymerase III in the process of transcription in Eukaryotes?
 - (1) Transcription of precursor of mRNA
 - (2) Transcription of only snRNAs
 - (3) Transcription of rRNAs (28S, 18S and 5.8S)
 - Transcription of tRNA, 5 srRNA and snRNA
- 102 Family Fabaceae differs from Solanaceae and Liliaceae. With respect to the stamens, pick out the characteristics specific to family Fabaceae but not found in Solanaceae or Liliaceae.
 - (1) Monoadelphous and Monothecous anthers
 - (2) Epiphyllous and Dithecous anthers
 - Diadelphous and Dithecous anthers
 - (4) Polyadelphous and epipetalous stamens

103 In the equation

GPP - R = NPP

GPP is Gross Primary Productivity NPP is Net Primary Productivity

R here is ______ Respiratory loss

- (2) Reproductive allocation
- (3) Photosynthetically active radiation
- (4) Respiratory quotient
- Spraying of which of the following phytohormone on juvenile conifers helps in hastening the maturity period, that leads to early seed production?
 - (1) Zeatin
 - (2) Abscisic Acid
 - (3) Indole-3-butyric Acid
 - 14 Gibberellic Acid
 - 105 Axile placentation is observed in
 - (1) Tomato, Dianthus and Pea *
 - China rose, Petunia and Lemon
 - (3) Mustard, Cucumber and Primrose+
 - (4) China rose, Beans and Lupin +

- 106 Among eukaryotes, replication of DNA takes place in -
 - (1) G₁ phase
- (2) G₂ phase
- (3) M phase
- (4) S phase
- 107 How many ATP and NADPH₂ are required for the synthesis of one molecule of Glucose during Calvin cycle?
 - (1) 12 ATP and 16 NADPH₂
 - (2) 18 ATP and 16 NADPH₂
 - (3) 12 ATP and 12 NADPH₂
 - (4) 18 ATP and 12 NADPH2
- Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: The first stage of gametophyte in the life cycle of moss is protonema stage.

Reason R: Protonema develops directly from spores produced in capsule.

In the light of the above statements, choose the most appropriate answer from the options given below:

- A is correct but R is not correct.
- (2) A is not correct but R is correct.
- (3) Both A and R are correct and R is the correct explanation of A.
- (4) Both A and R are correct but R is NOT the correct explanation of A.
- 109 Movement and accumulation of ions across a membrane against their concentration gradient can be explained by
 - (1) Passive Transport
 - (2) Active Transport
 - (3) Osmosis
 - (4) Facilitated Diffusion
- 110 Unequivocal proof that DNA is the genetic material was first proposed by
 - (1) Avery, Macleoid and McCarthy
 - (2) Wilkins and Franklin
 - (3) Frederick Griffith
 - Alfred Hershey and Martha Chase
- Which of the following stages of meiosis involves division of centromere?
 - (1) Anaphase II
- (2) Telophase
- (3) Metaphase I
- (4) Metaphase II

112 Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

> Assertion A: ATP is used at two steps in glycolysis. A

Reason R: First ATP is used in converting glucose into glucose-6-phosphate and second ATP is used in conversion of fructose-6phosphate into fructose-1-6-diphosphate.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is true but R is false.
- (2) A is false but R is true.
- (3) Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true but R is NOT the correct explanation of A.
- 113 Large, colourful, fragrant flowers with nectar are seen in:
 - (1) bat pollinated plants
 - (2) wind pollinated plants
 - insect pollinated plants
 - (4) bird pollinated plants
- (114) The historic Convention on Biological Diversity, 'The Earth Summit' was held in Rio de Janeiro in the year:
 - (1) 1986

(2) 2002

(3) 1985

- (4) 1992
- 115 The thickness of ozone in a column of air in the atmosphere is measured in terms of :
 - (1) Decameter
- (2) Kilobase
- Of Dobson units (4) Decibels
- 116 In tissue culture experiments, leaf mesophyll cells are put in a culture medium to form callus. This phenomenon may be called as:
 - (1) Development
 - Senescence (2)
 - Differentiation
 - Dedifferentiation

- Given below are two statements: Statement I: Endarch and exarch are the terms often used for describing the position of secondary xylem in the plant body. Statement II: Exarch condition is the most common feature of the root system. In the light of the above statements, choose the correct answer from the options given below:
 - (1) Statement I is correct but Statement II is false.
 - (2) Statement I is incorrect but Statement II is true.
 - (3) Both Statement I and Statement II are true.
 - (4) Both Statement I and Statement II are false.
- What is the function of tassels in the corn 118 cob?
 - (1) To disperse pollen grains
 - (2) To protect seeds
 - (3) To attract insects
 - (4) To trap pollen grains
- The process of appearance of recombination 119 nodules occurs at which sub stage of prophase I in meiosis?
 - (1) Diplotene
- (2) Diakinesis
- (3) Zygotene
- (A) Pachytene
- 120 Identify the pair of heterosporous pteridophytes among the following:
 - (1) Psilotum and Salvinia
 - (2) Equisetum and Salvinia
 - (3) Lycopodium and Selaginella
 - (4) Selaginella and Salvinia
- The reaction centre in PS II has an absorption 121 maxima at
 - (1) 660 nm
- 780 nm
- (2) 680 nm
- 700 nm (4)

122 In angiosperm, the haploid, diploid and triploid structures of a fertilized embryo sac sequentially are:

Synergids, Zygote and Primary endosperm nucleus

(2) Synergids, antipodals and Polar nuclei

(3) Synergids, Primary endosperm nucleus and zygote

(4) Antipodals, synergids, and primary endosperm nucleus

Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: Late wood has fewer xylary elements with narrow vessels.

Reason R: Cambium is less active in winters.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is true but R is false.
- (2) A is false but R is true.
- (3) Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true but R is NOT the correct explanation of A.
- 124 The phenomenon of pleiotropism refers to a single gene affecting multiple phenotypic expression.
 - (2) more than two genes affecting a single character.
 - (3) presence of several alleles of a single gene controlling a single crossover.
 - (4) presence of two alleles, each of the two genes controlling a single trait.
- 125 Cellulose does not form blue colour with lodine because
 - It does not contain complex helices and hence cannot hold iodine molecules.
 - (2) It breakes down when iodine reacts with it.
 - (3) It is a disaccharide.
 - (4) It is a helical molecule.

- 126 Frequency of recombination between gene pairs on same chromosome as a measure of the distance between genes to map their position on chromosome, was used for the first time by
 - Alfred Sturtevant
 - (2) Henking
 - (3) Thomas Hunt Morgan
 - (4) Sutton and Boveri
- Given below are two statements:

Statement I: The forces generated by transpiration can lift a xylem-sized column of water over 130 meters height.

Statement II: Transpiration cools leaf surfaces sometimes 10 to 15 degrees, by evaporative cooling.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.
- 128 Upon exposure to UV radiation, DNA stained with ethidium bromide will show
 - (1) Bright yellow colour
 - (2) Bright orange colour
 - (3) Bright red colour
 - (4) Bright blue colour
- 129 Which micronutrient is required for splitting of water molecule during photosynthesis?
 - (1) magnesium
- (2) copper
- (2) manganese
- (4) molybdenum
- 130 Which hormone promotes internode/petiole elongation in deep water rice?
 - (4) Ethylene
- (2) 2, 4-D
- (3) GA₃
- (4) Kinetin

131 Identify the correct statements: 11

Detrivores perform fragmentation.

B. The humus is further degraded by some microbes during mineralization.

C. Water soluble inorganic nutrients go down into the soil and get precipitated by a process called leaching.

D. The detritus food chain begins with living organisms. +

Earthworms break down detritus into smaller particles by a process called catabolism.

Choose the correct answer from the options given below:

(1) C, D, E only (2) D, E, A only

(2) A, B, C only (4) B, C, D only+

132 In gene gun method used to introduce alien DNA into host cells, microparticles of metal are used.

Tungsten or gold

(2) Silver

(3) Copper

(4) Zinc

During the purification process for recombinant DNA technology, addition of chilled ethanol precipitates out

(1) Histones

(2) Polysaccharides

(3) RNA

(4) DNA

. 134 Among 'The Evil Quartet', which one is considered the most important cause driving extinction of species?

(1) Alien species invasions

(2) Co-extinctions

(a) Habitat loss and fragmentation

(4) Over, exploitation for economic gain

135 Expressed Sequence Tags (ESTs) refers to All genes whether expressed or unexpressed.

Certain important expressed genes.

(3) All genes that are expressed as RNA.

(4) All genes that are expressed as proteins.

Botany : Section-B (Q. No. 136 to 150)

136 Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A : In gymnosperms the pollen grains are released from the microsporangium and carried by air currents Reason R: Air currents carry the pollen grains to the mouth of the archegonia where the male gametes are discharged and pollen tube is not formed.

In the light of the above statements, choose the correct answer from the options given below:

(1) A is true but R is false.

(2) A is false but R is true.

(3) Both A and R are true and R is the correct explanation of A.

(4) Both A and R are true but R is NOT the correct explanation of A.

Identify the correct statements: 137

A. Lenticels are the lens-shaped openings permitting the exchange of gases.

 Bark formed early in the season is called hard bark.

Bark is a technical term that refers to all tissues exterior to vascular cambium.

 Bark refers to periderm and secondary phloem.

E. Phellogen is single-layered in thickness. Choose the correct answer from the options given below:

(I) A, B and D only

(2) B and C only

(3) B, C and E only

(4) A and D only

138 Match List I with List II: List I

A. Oxidative decarboxylation

List II Citrate synthase

B. Glycolysis

II. Pyruvate dehydrogenase

C. Oxidative phosphorylation D. Tricarboxylic

III. Electron transport system

IV. EMP pathway acid cycle Choose the correct answer from the options given below:

(1) A-III, B-I, C-II, D-IV

(2) A-II, B-IV, C-III, D-I (3) A-III, B-IV, C-II, D-I

(4) A-II, B-IV, C-I, D-III +

- 139 How many different proteins does the ribosome consist of?
 - (1) 40

(2) 20

(3) 80

(4) 60

140 Given below are two statements:

Statement I: Gause's 'Competitive Exclusion Principle' states that two closely related species competing for the same resources cannot co-exist indefinitely and competitively inferior one will be eliminated eventually.

Statement II: In general, carnivores are more adversely affected by competition than herbivores.

In the light of the above statements, choose the **correct** answer from the options given below:

- Statement I is correct but Statement II is false.
- (2) Statement 1 is incorrect but Statement 11 is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.
- 141 Match List I with List II:

List I

List II

- A. Cohesion
- More attraction in liquid phase
- B. Adhesion
- II. Mutual attraction among water molecules
- C. Surface tension
- III. Water loss in liquid phase
- D. Guttation
- IV. Attraction towards polar surfaces

Choose the correct answer from the options given below:

- (1) A-III, B-I, C-IV, D-II *
- (2) A-II, B-I, C-IV, D-III
- A-II, B-IV, C-I, D-III
- (4) A-IV, B-III, C-II, D-I ⊀

- 142 Which one of the following statements is NOT correct?
 - Water hyacinth grows abundantly in eutrophic water bodies and leads to an imbalance in the ecosystem dynamics of the water body.
 - (2) The amount of some toxic substances of industrial waste water increases in the organisms at successive trophic levels.
 - (3) The micro-organisms involved in biodegradation of organic matter in a sewage polluted water body consume a lot of oxygen causing the death of aquatic organisms.
 - Algal blooms caused by excess of organic matter in water improve water quality and promote fisheries.
 - 143 Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: A flower is defined as modified shoot wherein the shoot apical meristem changes to floral meristem.

Reason R: Internode of the shoot gets condensed to produce different floral appendages laterally at successive nodes instead of leaves.

In the light of the above statements, choose the correct answer from the options given below:

- A is true but R is false.
- (2) A is false but R is true.
- (3) Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true but R is NOT the correct explanation of A.
- 144 Melonate inhibits the growth of pathogenic bacteria by inhibiting the activity of
 - (1) Lipase
 - (2) Dinitrogenase
 - (8) Succinic dehydrogenase
 - (4) Amylase

145 Match List I with List II:

List II Proteins are synthesized
synthesized
Inactive phase
Interval between
mitosis and
initiation of DNA replication
Equational

Choose the correct answer from the options given below:

division

A-IV, B-I, C-II, D-III

- (2) A-II, B-IV, C-I, D-III
- (3) A-III, B-II, C-IV, D-I
- (4) A-IV, B-II, C-I, D-III
- 146 Which of the following combinations is required for chemiosmosis?
 - (1) proton pump, electron gradient, ATP synthase
 - (2) proton pump, electron gradient, NADP synthase
 - (3) membrane, proton pump, proton gradient, ATP synthase
 - (4) membrane, proton pump, proton gradient, NADP synthase
- 147 Main steps in the formation of Recombinant DNA are given below. Arrange these steps in a correct sequence.
 - A. Insertion of recombinant DNA into the host cell.
 - B. Cutting of DNA at specific location by restriction enzyme.
 - Isolation of desired DNA fragment.
 - D. Amplification of gene of interest using PCR.

Choose the correct answer from the options given below:

- (1) C, B, D, A
- (2) B, D, A, C
- (3) B, C, D, A
- (4) C, A, B, D

- Which of the following statements are correct about Klinefelter's Syndrome? 148
 - This disorder was first described by Langdon Down (1866).
 - B. Such an individual has overall masculine development. However, the feminine development is also expressed.
 - C. The affected individual is short statured.
 - D. Physical, psychomotor and mental development is retarded.
 - E. Such individuals are sterile.

Choose the correct answer from the options given below:

- B and E only (2) A and E only
- (3) A and B only (4) C and D only

149 Match List I with List II:

List Į		List II
A. Iron (I.	Synthesis of auxin
B. Zinc	II.	Component of
¥)		nitrate reductase
C. Boron	III.	Activator of catalase
D. Molybdenum	IV.	Cell elongation and
		differentiation

Choose the correct answer from the options given below:

- A-III, B-I, C-IV, D-II
- (2) A-II, B-IV, C-I, D-III
- (3) A-III, B-II, C-I, D-IV
- (4) A-II, B-III, C-IV, D-I

150 Match List I with List II: List I

(Interaction)	List II
A. Mutualism	(Species A and B)
B. Commensalism	1 + (A), O(B)
C. Amensalism	II. $-(A)$, $O(B)$
D. Parasitism	III. + (A), -(B)
Choose the correct ar	IV. +(A), +(B)
given below:	IV. +(A), +(B) aswer from the options

- (1) A-IV, B-III, C-I, D-II ****
- (2) A-III, B-I, C-IV, D-II
- (3) A-IV, B-II, C-I, D-III
- A-IV, B-I, C-II, D-III

Zoology: Section-A (Q. No. 151 to 185)

- 151 Once the undigested and unabsorbed substances enter the caecum, their backflow is prevented by-
 - Gastro oesophageal sphincter
 - (2) Pyloric sphincter
 - (3) Sphincter of Oddi
 - (M) Ileo caecal valve
- Match List I with List II.
 - List I

List II

- A. Heroin
- Effect on

cardiovascular system

- B. Marijuana II. Slow down body function
- C. Cocaine
- III. Painkiller
- D. Morphine IV. Interfere with transport of dopamine

Choose the correct answer from the options given below:

- (1) A-IV, B-III, C-II, D-I
- (2) A-III, B-IV, C-I, D-II
- (3) A-II, B-I, C-IV, D-III
- (4) A-I, B-II, C-III, D-IV
- 153 Which of the following functions is carried out by cytoskeleton in a cell?
 - (Y) Motility
 - (2) Transportation
 - (3) Nuclear division
 - (4) Protein synthesis
- 154 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Amniocentesis for sex determination is one of the strategies of Reproductive and Child Health Care Programme. ٨

Reason R: Ban on amniocentesis checks increasing menace of female foeticide.

In the light of the above statements, choose the correct answer from the options given below:

- A is true but R is false.
- A is false but R is true.
- (3) Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true and R is NOT the correct explanation of A.

155 Given below are two statements:

Statement 1: Vas deferens receives a duct from seminal vesicle and opens into urethra as the ejaculatory duct.

Statement II: The cavity of the cervix is called cervical canal which along with vagina forms birth canal.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is correct but Statement II is false.
- (2) Statement I incorrect but Statement II is true.
- (27 Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.
- Match List I with List II. 156

List II List I

- A. r-wave
 I. Beginning of systole
 B. Q-wave
 II. Repolarization ventricles
- C. QRS complex III. Depolarisation of atria
- D. T-wave
- IV. Depolarisation of ventricles

Choose the correct answer from the options given below:

- A-II, B-IV, C-I, D-Ⅲ
- (2) A-I, B-II, C-III, D-IV
- A-III, B-I, C-IV, D-II A-IV, B-III, C-II, D-I
- 157 Given below are two statements:

Statement I: A protein is imagined as a line, the left end represented by first amino acid (C-terminal) and the right end represented by last amino acid (N-terminal)

Statement II: Adult human haemoglobin, consists of 4 subunits (two subunits of α type and two subunits of β type.)

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false.
 - Statement I is false but Statement II (2) is true.
- Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.

158 Match List I with List II.

List 1

List II

- A. Ringworm I. Haemophilus influenzae
- B. Filariasis
- II. Trichophyton
- C. Malaria
- III. Wuchereria bancrosti

- D. Pneumonia IV. Plasmodium vivax Choose the correct answer from the options given below:
- (1) A-III, B-II, C-I, D-IV
- (2) A-III. B-II, C-IV, D-I
- 437 A-II, B-III, C-IV, D-1
- (4) A-II, B-III, C-I, D-IV
- 159 Vital capacity of lung is
 - (1) IRV + ERV + TV RV
 - (Z) IRV + ERV + TV
 - (3) IRV + ERV
 - IRV + ERV + TV + RV
- 160 Which of the following statements are correct regarding female reproductive cycle?
 - A. In non-primate mammals cyclical changes during reproduction are called oestrus cycle.
 - First menstrual cycle begins at puberty and is called menopause. 🔨
 - C. Lack of menstruation may be indicative of pregnancy.
 - D. Cyclic menstruation extends between menarche and menopause.

Choose the most appropriate answer from the options given below:

- (I) A, B and C only
- A, C and D only
- (3) A and D only
- (4) A and B only

161 Match List I with List II.

List I

List II (Secretion)

(Cells)

- Mucus I.
- A. Peptic cells B. Goblet cells
- II. Bile juice
- C. Oxyntic cells III. Proenzyme pepsinogen IV. HCl and intrinsic factor
- D. Hepatic cells 0

for absorption of

vitamin B₁₂

Choose the correct answer from the options given below:

- (L) A-III, B-I, C-IV, D-II
- (2) A-II, B-IV, C-I, D-III
- (3) A-IV, B-III, C-II, D-I
- (4) A-II, B-I, C-III, D-IV
- Match List I with List II.

List I

List II

- A. Vasectomy
- Oral method I.
- В. Çoitus
- Π. Barrier method
- interruptus C. Cervical caps
 - III. Surgical method
- D. Saheli
- IV. Natural method

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-I, D-IV
- (2) A-IV, B-II, C-I, D-III
- (3) A-III, B-I, C-IV, D-II
- -(4) А.Ш, В-IV, С-II, D-I
- 163 Match List I with List II.

List I

List II

- Taenia
- Nephridia
- Paramoecium
- Ц. Contractile vacuole
- Periplaneta
- III. Flame cells
- D. Pheretima
- IV. Urecose gland

Choose the correct answer from the options

- -(1) A-III, B-II, C-IV, D-I
 - (2) Acil, B-I, C-IV, D-III
- (3) AI, B-II, C-III, D-IV
- (4) A-I, B-II, C-IV, D-III

164	Wh	ich one of the following symbols
	rep	resents mating between relatives in
	hun	nan pedigree analysis?
	(1)	(2)
	(3)	
165	Wh	ich of the following statements is correct?
	(1)	Presence of large amount of nutrients
		in water restricts 'Algal' Bloom
	(2)	Algal Bloom decreases fish mortality
	(3)	Eutrophication refers to increase in
		domestic sewage and waste water in lakes.
	(st	Biomagnification refers to increase in
	y ,	concentration of the toxicant at
		successive trophic levels.
		1
166	Whi	ich of the following are NOT considered
	as t	he part of endomembrane system?
	A.	Mitochondria B. Endoplasmic Reticulum
	~	
	(S	Chloroplasts D. Golgi complex
	E.	Peroxisomes ose the most appropriate answer from
31	the	options given below:
		A and D only
9		A D and E only
		P and D only
	• •	A, C and E only
167	Sele	ect the correct group/set of Australian
	Mar	supials exhibiting adaptive radiation.
	(1)	Mole, Flying squirrel,
		Tasmanian tiger cat
		Lemur, Anteater, Wolf
	(3)	Tasmanian wolf, Bobcat

168	Statement I: In prokaryotes, the positively + charged DNA is held with some negatively charged proteins in a region called nucleoid. Statement II: In eukaryotes, the negatively charged DNA is wrapped around the positively charged histone octamer to form nucleosome. In the light of the above statements, choose the correct answer from the options given below:
	(1) Statement I is correct but
	Statement II is false. Statement I incorrect but Statement II
	is true
	(3) Both Statement I and Statement II are true.
	(4) Both Statement I and Statement II are false.
169	Statement I: Electrostatic precipitator is most widely used in thermal power plant. Statement II: Electrostatic precipitator in thermal power plant removes ionising radiations In the light of the above statements, choose the most appropriate answer from the options given below: (1) Statement I is correct but Statement II is incorrect. (2) Statement I incorrect but Statement II is correct. (3) Both Statement I and Statement II are correct. (4) Both Statement I and Statement II are incorrect.
179	Match List I with List II. List I List II
	A. CCK I. Kidney
0	B. GIP II. Heart
1	C ANF III. Gastric gland

	List I		Li	st II		
A.	CCK	I.	K	idney		
В.	GIP	II.	H	eart		
	ANF	Ш	G	astric g	land	
D.	ADH	IV.	Pa	ancreas		
Ch	oose the	correct ans	wer	from t	he optic	ns
	en belov				3078	
(1)	A-II, I	3-IV, C-I, D)-III			
(2)	_A-IV,	B-II, C-III,	D-I			
13	A-IV,	В-Ш, С-ІІ,	D-I			
		B-II, C-IV,			9.5	
, ,				4		

Marsupial mole

Flying phalanger

(4) Numbat, Spotted cuscus,

171 Given below are statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Nephrons are of two types: Cortical & Juxta medullary, based on their, relative position in cortex and medulla.

Reason R: Juxta medullary nephrons have short loop of Henle whereas, cortical nephrons have longer loop of Henle.

In the light of the above statements, choose the correct answer from the options given below:

A is true but R is false.

- (2) A is false but R is true.
- (3) Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true but R is NOT the correct explanation of A.
- 172 In which blood corpuscles, the HIV undergoes replication and produces progeny viruses?
 - Basophils
- (2) Eosinophils
- (2) T_H cells
- (4) B-lymphocytes
- Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Endometrium is necessary for implantation of blastocyst.

Reason R: In the absence of fertilization, the corpus luteum degenerates that causes disintegration of endometrium.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is true but R is false:
- (2) A is false but R is true.
- Both A and R are true and R is the correct explanation of A.

Both A and R are true but R is NOT the correct explanation of A.

Given below are two statements: Statement I: RNA mutates at a faster rate, 174 Statement II: Viruses having RNA genome

and shorter life span mutate and evolve

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Statement I false but Statement II is true.
- (8) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.
- Match List I with List II with respect to 175 human eye.

List II List 1

- A. Fovea Visible coloured portion of eye that regulates diameter of pupil.
- B. Iris Π. External layer of eye formed of dense connective tissue.
- C. Blind spot III. Point of greatest visual acuity or resolution.
- D. Sclera IV. Point where optic nerve leaves the eyeball and photoreceptor cells are absent.

Choose the correct answer from the options given below:

- (1) A-I, B-IV, C-III, D-II
- (2) A-II, B-I, C-III, D-IV
- --(2) A-III, B-I, C-IV, D-II
 - (4) A-IV, B-III, C-II, D-I

176 Given below are two statements:

Statement I: Ligaments are dense 🗸

irregular tissue.

Statement II: Cartilage is dense regular +

tissue.

In the light of the above statements, choose the correct answer from the options given below:

Statement 1 is true but Statement II ✓ is false.

Statement I is false but Statement II is true.

(3) Both Statement I and Statement II are true.

(4) Both Statement I and Statement II are false.

Match List I with List II. 177

List II List I

- Gene 'a' Α.
- β-galactosidase I.
- Gene 'y'. В.
- Transacetylase П.
- C. Gene 'i'
- III. Permease
- IV. Repressor protein Gene 'z' D. Choose the correct answer from the options given below:
- (1) A-III. B-IV, C-I, D-II
- (2) A-III. B-I. C-IV, D-II
- (3), A-II, B-I, C-IV, D-III
- A-II. B-III, C-IV, D-I,

Given below are two statements:

Statement 1: Low temperature preserves the enzyme in a temporarily inactive state whereas high temperature destroys enzymatic . activity because proteins are denatured by heat.

Statement II: When the inhibitor closely resembles the substrate in its molecular structure and inhibits the activity of the enzyme, it is known as competitive inhibitor. In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- (2) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.

Match List I with List II. 179

List I

List II (Found between)

- (Type of Joint) A. Cartilaginous Joint
- Between flat skull bones
- Ball and В. Socket Joint
- Between adjacent П. vertebrae in vertebral column
- III. Between carpal Fibrous Joint and metacarpal of thumb
- IV. Between D. Saddle Joint Humerus and Pectoral girdle

Choose the correct answer from the options given below:

- (1) A-1, B-IV, C-III, D-II ♣
- (2) A-II, B-IV, C-III, D-I
- (3) A-III, B-I, C-II, D-IV →
- -(4) A-II, B-IV, C-I, D-III

Match List I with List II. 180

List I (Interacting species)

List II (Name of Interaction)

Competition

- A. A Leopard and a Lion in a forest/ grassland
- B. A Cuckoo laying egg in a Crow's nest
- Brood Π. parasitism
- III. Mutualism C. Fungi and root of a higher plant in. Mycorrtizae
- IV. Commensalism D. A cattle egret and a Cattle in a field

Choose the correct answer from the options given below:

I.

- (1) A-III, B-IV, C-I, D-II
- (2) A-II, B-III, C-I, D-IV
- (a) A-I, B-II, C-III, D-IV
- (4) A-I, B-II, C-IV, D-III

	Zoology : Section-B (Q. 10.
•3	treach excretion is brought dead
181 Which of the following is not a cloning	186 In cockroach, excretion is of the B. Urecose gland A. Phallic gland B. Urecose gland D. Fat body
NO TORN AND DESCRIPTION	
vector?	C. Nejmooyi landa
(1) pBR322 (2) Probe	E. Collaterial glands Choose the correct answer from the options
	Choose the correct and
(3) BAC (4) YAC	given below:
	(1) B C and D only
.5	(2) B and D only
182 Broad palm with single palm crease is visible	12) A and E only
in a person suffering from-	(4) A, B and E only
	· · · · · · · · · · · · · · · · · · ·
(1) Klinefelter's syndrome	187 Match List I with List II.
(2) Thalassemia	LIST II
(2) Thalassemia	A. Mast cells I. Ciliated epithelium
Down's syndrome	P Inner surface II. Arcolar
(A) Townson's symplecture	of bronchinde connective tissue
(4) Turner's syndrome	C. Blood III. Cuboidal epithelium
	D. Tubular parts IV. specialised
	of nephron connective tissue
183 Which one of the following techniques does	Choose the correct answer from the options
not serve the purpose of early diagnosis of	give below:
a disease for its early treatment?	A-II, B-I, C-IV, D-III
_	(2) A-III, B-IV, C-II, D-I ×
(1) Polymerase Chain Reaction (PCR)	(3) A-l, B-II, C-IV, D-III
technique	(4) A-II, B-III, C-I, D-IV ×
(3) F 111 11	(1) 11 H, B-III, C-I, B-IV
(2) Enzyme Linked Immuno-Sorbent Assay	188 Match List I with List II.
(ELISA) technique	List I List II
(3) Recombinant DNA Technology	2002 14
Serum and Urine analysis	
	growth availability condition
184 Radial symmetry is NOT found in adults of	C. Expanding III. The percent individuals
,	age pyramid of pre-reproductive
phylum	age is largest followed
(1) Coelenterata (2) Echinodermata	by reproductive and
(1) Cocienterata (2) Ecimodelmata	post reproductive
(3) Ctenophora (4) Hemichordata	age (moure
2	D. Stable age IV. The percent individuals
IN CONTRACTOR OF THE CONTRACTO	pyramid of pre-repredent
and the fallenian arms	of pre-reproductives
185 Which one of the following common	and reproductive age
sexually transmitted diseases is completely	Choose the correct areas
curable when detected early and treated	Choose the correct answer from the options
	(1) A-II, B-IV, C-I, D-III
properly?	(2) A-II B-IV C-I, D-III "
(1) Hepatitis-B (2) HIV Infection	(2) A-II, B-IV, C-III, D-I
(1) 110paint	(a) A-II, B-I, C-III, D-IV
(3) Genital herpes (4) Gonorrhoea	(4) A-II, B-III, C-I, D-IV
(3)	**

Zoology: Section-B (Q. No. 186 to 200)

- Which of the following are NOT under the control of thyroid hormone?
 - A. Maintenance of water and electrolyte balance
 - B. Regulation of basal metabolic rate
 - C. Normal rhythm of sleep-wake cycle,
 - D. Development of immune system
 - E. Support the process of R.B.Cs formation Choose the **correct** answer from the options given below:
 - (2) C and D only (2) D and E only
 - (3) A and D only (4) B and C only
- 190 Which of the following statements are correct regarding skeletal muscle?
 - A. Muscle bundles are held together by collagenous connective tissue layer called fascicle.
 - B. Sarcoplasmic reticulum of muscle fibre is a store house of calcium ions.
 - C. Striated appearance of skeletal muscle fibre is due to distribution pattern of actin and myosin proteins.
 - D. M line is considered as functional unit of contraction called sarcomere.

Choose the *most appropriate* answer from the options given below:

- (1) A, C and D only
- (2) C and D only
- (3) A, B and C only
- (4) B and C only
- 191 Select the correct statements with reference to chordates.
 - A. Presence of a mid-dorsal, solid and double nerve cord.
 - B. Presence of closed circulatory system.
 - C. Presence of paired pharyngeal gillslits.
 - D. Presence of dorsal heart
 - E. Triploblastic pseudocoelomate animals. Choose the correct answer from the options given below:
 - (1) B, D and E only &
 - (2) C, D and E only
 - (3) A, C and D only +
 - (4) B and C only

- 192) The unique mammalian characteristics are:
 - (1) hairs, pinna and indirect development
 - (2) pinna, monocondylic skull and mammary glands
 - (3) hairs, tympanic membrane and mammary glands
 - hairs, pinna and mammary glands
- 193 Select the correct statements.
 - A. Tetrad formation is seen during Leptotene. 4
 - B. During Anaphase, the centromeres split and chromatids separate.
 - C. Terminalization takes place during Pachytene. 4
 - D. Nucleolus, Golgi complex and ER are reformed during Telophase.
 - E. Crossing over takes place between sister chromatids of homologous chromosome.

Choose the **correct** answer from the options given below:

- (1) A, C and E only
- (2) B and E only
- (3) A and C only
- (A) B and D only
- 194 Given below are two statements:

Statement I: During G₀ phase of cell cycle, the cell is metabolically inactive.

Statement II: The centrosome undergoes duplication during S phase of interphase. In the light of the above statements, choose the *most appropriate* answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement Π are incorrect.

- 195 Which of the following statements are correct?
 - A. An excessive loss of body fluid from the body switches off osmoreceptors.
 - B. ADH facilitates water reabsorption to prevent diuresis.
 - C. ANF causes vasodilation.
 - D. ADH causes increase in blood pressure.
 - E. ADH is responsible for decrease in GFR.

Choose the correct answer from the options given below:

- (1) A, B and E only
- (2) C, D and E only
- (3) A and B only
- (4) B, C and D only
- 196 Which of the following is characteristic feature of cockroach regarding sexual dimorphism?
 - (1) Presence of scienites
 - (2) Presence of anal cerci
 - (3) Dark brown body colour and anal cerci
 - (4) Presence of anal styles
- 197 The parts of human brain that helps in regulation of sexual behaviour, expression of excitement, pleasure, rage, fear etc. are:
 - (1) Brain stem & epithalamus
 - (2) Corpus callosum and thalamus
 - (3) Limbic system & hypothalamus
 - (4) Corpora quadrigemina & hippocampus

- - (1) 5' ATCGATCGATCGATCG ATCGATCG 3'
 - (2) 3' ATCGATCGATCGATCGATCG ATCGATCG 5'
 - (3) 5' UAGCUAGCUAGCUAGCUA GCUAGC UAGC 3'
 - (4) 3' UAGCUAGCUAGCUAGCUA GCUAGCUAGC 5'
- 199 Which of the following statements are correct?
 - A. Basophils are most abundant cells of the total WBCs -
 - B. Basophils secrete histamine, serotonin and heparin
 - C. Basophils are involved in inflammatory response
 - D. Basophils have kidney shaped nucleus
 - E. Basophils are agranulocytes+

Choose the correct answer from the options given below:

- B and C only (2) A and B only
- (3) D and E only (4) C and E only
- 200 Which one of the following is NOT an advantage of inbreeding?
 - (1) Elimination of less desirable genes and accumulation of superior genes takes place due to it.
 - (2) It decreases the productivity of inbred population, after continuous inbreeding.
 - (3) It decreases homozygosity.
 - (4) It exposes harmful recessive genes that are eliminated by selection.